Student (Print)	 Section	

Last, First Middle

Student (Sign)

Student ID

Instructor

MATH 152 Exam 2 Fall 2000 Test Form B

Part I is multiple choice. There is no partial credit.

Part II is work out. Show all your work. Partial credit will be given.

You may not use a calculator.

1-10	/50
11	/10
12	/10
13	/10
14	/10
15	/10
TOTAL	

Formulas:

$$M_{n} = \Delta x \left[f\left(\frac{x_{0} + x_{1}}{2}\right) + f\left(\frac{x_{1} + x_{2}}{2}\right) + \dots + f\left(\frac{x_{n-1} + x_{n}}{2}\right) \right] \qquad \int \ln x dx = x \ln x - x + C$$

$$T_{n} = \frac{\Delta x}{2} \left[f(x_{o}) + 2f(x_{1}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right] \qquad \int \tan x dx = -\ln|\cos x| + C$$

$$S_{n} = \frac{\Delta x}{3} \left[f(x_{o}) + 4f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right] \qquad \int \sec x dx = \ln|\sec x + \tan x| + C$$

$$|E_{M}| < \frac{K(b-a)^{3}}{24n^{2}} \quad \text{where} \quad K > f''(x) \quad \text{for all } x \text{ in } [a,b]$$

$$|E_{T}| < \frac{K(b-a)^{3}}{12n^{2}} \quad \text{where} \quad K > f''(x) \quad \text{for all } x \text{ in } [a,b]$$

$$|E_{S}| < \frac{K(b-a)^{5}}{180n^{4}} \quad \text{where} \quad K > f^{(4)}(x) \quad \text{for all } x \text{ in } [a,b]$$

$$\int \ln x \, dx = x \ln x - x + C$$

$$\int \tan x \, dx = -\ln|\cos x| + C$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

- 1. Compute $\int_{e}^{\infty} \frac{1}{x \ln x} dx.$
 - **a**. 0
 - **b**. $\frac{1}{e}$
 - **c**. 1
 - **d**. *e*
 - **e**. ∞
- **2**. After separating variables, we can solve the differential equation $\frac{dy}{dt} = ty + \frac{t}{y}$ by solving
 - $\mathbf{a.} \ \int \left(\frac{1}{y} + y\right) dy = \int t dt$
 - $\mathbf{b.} \ \int \frac{y}{y^2 + 1} \, dy = \int t \, dt$
 - **c.** $\int (y^2 + y) dy = \int (t+1) dt$
 - $\mathbf{d.} \quad \int \frac{y^2 + 1}{y} \, \frac{1}{dy} = \int \frac{t}{dt}$
 - e. None of the above, the differential equation is not separable.
- 3. Compute $\lim_{n\to\infty} \frac{\ln(2+e^n)}{3n}$
 - **a**. 0

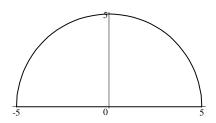
 - b. $\frac{1}{3}$ c. $\frac{2}{3}$ d. $\frac{\ln 2}{3}$
 - **e**. ∞

- **4**. Which of the following gives the Trapezoid Rule approximation to $\int_{2}^{4} \frac{1}{x} dx$ with n = 4?

 - a. $\frac{1}{4} \left[\frac{1}{4} + \frac{2}{5} + \frac{1}{3} + \frac{2}{7} + \frac{1}{8} \right]$ b. $\frac{1}{4} \left[\frac{1}{2} + \frac{2}{5} + \frac{1}{3} + \frac{2}{7} + \frac{1}{4} \right]$ c. $\frac{1}{4} \left[\frac{1}{2} + \frac{4}{5} + \frac{2}{3} + \frac{4}{7} + \frac{1}{4} \right]$ d. $\frac{1}{2} \left[\ln 2 + \ln \frac{3}{2} + \ln 3 + \ln \frac{7}{2} + \ln 4 \right]$ e. $\frac{1}{4} \left[\ln 2 + 2 \ln \frac{3}{2} + 2 \ln 3 + 2 \ln \frac{7}{2} + \ln 4 \right]$
- **5**. If you use the Trapezoid Rule with n = 4 to approximate $\int_{2}^{4} \frac{1}{x} dx$, which of the following is the smallest upper bound on the error $|E_T|$ in the approximation?
- **6.** An integrating factor for the differential equation $\frac{dy}{dx} = x \sin 2x + y \tan x$ is I(x) =
 - **a**. $|\cos x|$
 - **b**. $e^{-\sec^2 x}$
 - **c**. $e^{-|\tan x|}$
 - **d**. $-|\sec x|$
 - **e**. $e^{|\cos x|}$
- 7. Find the arc length of the parametric curve $x = 4\cos t$, $y = 4\sin t$ for $\frac{\pi}{6} \le t \le \frac{\pi}{3}$.

A tank is completely filled with water. The end is a vertical semicircle with radius 5 m as shown. Which integral gives the hydrostatic force on this end of the tank?

The density of water is $1000 \frac{\text{kg}}{\text{m}^3}$ and $g = 9.8 \frac{\text{m}}{\text{sec}^2}$.



a.
$$9800 \int_0^5 (5-y) 2\sqrt{25-y^2} \ dy$$

b.
$$9800 \int_0^5 (5+y) \sqrt{25-y^2} dy$$

c.
$$9800 \int_{0}^{5} (5-y)(25-y^2) dy$$

d.
$$9800 \int_0^5 (5+y) 2\sqrt{25-y^2} \ dy$$

e.
$$9800 \int_0^5 (5+y)(25-y^2) dy$$

9. The parametric curve $x = e^t - t$, $y = 4e^{t/2}$ for $0 \le t \le 2$ is rotated about the *x*-axis. Which integral gives the area of the surface of revolution? HINT: Look for a perfect square.

a.
$$\int_0^2 2\pi (e^t - t) (e^{2t} + 2e^t + 1) dt$$

b.
$$\int_0^2 2\pi (e^t - t) (e^t + 1) dt$$

b.
$$\int_{0}^{2} 2\pi (e^{t} - t) (e^{t} + 1) dt$$
c.
$$\int_{0}^{2} 8\pi e^{t/2} (e^{2t} + 2e^{t} + 1) dt$$

d.
$$\int_{0}^{2} 8\pi e^{t/2} (e^{t} + 1) dt$$

e.
$$\int_{0}^{2} 8\pi e^{t/2} \sqrt{e^{t}+1} dt$$

10. Calculate the x-component (or coordinate) of the center of mass of a plate with uniform density ρ and whose shape is the quarter circle of radius 3 given by $0 \le x \le 3$ and $0 \le y \le \sqrt{9-x^2}$.

a.
$$\frac{\pi}{4}$$

b.
$$\frac{\dot{9}\pi}{4}\rho$$

c. 9
$$\rho$$

d.
$$\frac{8}{\pi}$$

e.
$$\frac{4}{\pi}$$

Part II: Work Out (10 points each)

Show all your work. Partial credit will be given.

You may not use a calculator.

11. Determine whether each of the following integrals converges or diverges. If it converges, find its value.

Hint: Partial fractions

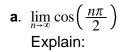
a.
$$\int_{1}^{\infty} \frac{2}{2x + x^2} dx$$
 Explain:

Circle one: Converges Diverges

b.
$$\int_0^1 \frac{2}{2x + x^2} dx$$
 Explain:

Circle one: Converges Diverges

12. Determine whether each of the following sequences converges or diverges. If it converges, find the limit. Fully justify your answers.



Circle one: Converges Diverges

b. $\lim_{n\to\infty} \frac{\sin^2 n}{2^n}$ Explain:

Circle one: Converges Diverges

13. Solve the initial value problem

$$x\frac{dy}{dx} + 2y = \frac{\cos x}{x}$$
 with $y(\pi) = 2$.

14. Compute the surface area of the surface obtained by rotating the curve $x = 1 + y^2$ for $1 \le y \le 2$ about the *x*-axis?

15.	A tank contains 40 lb of salt mixed with 60 gal of water. Salt water containing 4 lb of salt per gal is added to the tank at the rate of 3 gal per min. The tank is kept thoroughly mixed and drains at the same rate.		
	a . Write out the differential equation and the initial condition for $S(t)$, the number of lbs of sa in the tank at time t .	ılt	
	b. Solve the initial value problem.		
	c. How much salt is in the tank after 20 hours?		