M152 Exam #3 Solutions
Spring 2002
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The correct answer is (d).

. Now
(1/V3, =1/v/3, =1/V3) -a= (1/V3)(1) + (=1/V3)(=1) + (=1/V3)(2) =
I(1/v3, =1/v/3, =1/V3)| = \/(1/\/5)2 +(=1/V3)2 + (-1/v3)2 = /(1/3) + (1/3) + (1/3) = 1..

The correct answer is (b).
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The correct answer is (e).

. If f(x) =Inx, then f'(x) =1/x, f"(x) = —1/(2?) and f"'(z) = 2/(2). Thus, f(1) =0, f'(1) =
1, (1) = =1 and f’”(1) =2. The third-degree Taylor polynomial for f(z) =lnz at a=1 is
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The correct answer is (a).
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The correct answer is (b).
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The correct answer is (a).
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R < ) for all » > 1 and Zﬁ converges. Thus, z:l
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comparison test.

. Now 0 < 32_ 5 converges by the

The correct answer is (c).

. Now 0=2a%+y?+22+62—8y=(2+3)2 -9+ (y—4)>—16+22%,s0 (v —(=3))%>+(y—4)?+ 2% =25.
The center of the sphere is located at (=3, 4, 0).

The correct answer is (d).
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If f(z)=1/(z(Inz)?), then f(z) >0 and f(z) is decreasing on [2,00). Moreover,
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The series Z 7)2

converges by the integral test.
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The correct answer is (d).
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= Z 3001 = Z = which converges since p = 1.001 > 1.
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The correct answer is (e).

Now
(=D (z —3)"+!
lim (n+ D)2t = lim nlz — 3| = = — 3| <1
n(2")

when |z — 3| < 2. Thus, the radius of convergence of the power series is R = 2.

When z =5,
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which converges by the alternating series test, since 1/n > 0 and 1/n > 1/(n+ 1) for all n and

lim 1/n=0.
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When z =1,
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which is the harmonic series and diverges. The interval of convergence of the power seriesis 1 <z <5.
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(a) The series g ﬁ has positive terms and diverges by the limit comparison test. Indeed,
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and Z — diverges when p = 1/2.
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(b) The series z:(—l)"nL%_1 diverges since nlglgo(—l)”n 1
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13. (a) Now 1/(1—1t) = Zt” for [t| < 1. Let t = —x2/4. Then for |z| <2,
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The radius of convergence of this power series is R = 2.
(b) For |z| < 2,
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The radius of convergence of the differentiated power series is also R =2.
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for all . The Maclaurin series for / sin(t?) dt is Z x4”+3.

(b) Using the first 2 terms of the series above,
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The Maclaurin series for / sin(t?) dt is an alternating series, so
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15. The series Z[l —cos(1/n)] has positive terms,
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and E — converges. Thus, E [l — cos(1/n)] converges by the limit comparison test.
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