Last, First Middle Sec_____ Name (Sign)_____

1-12 /60 13 /12 14 /12 /12 15 16 /12

MATH 152

FINAL EXAM

Spring 2005

Sections 813-815 Version A1

P. Yasskin

Multiple Choice: (5 points each)

- **1.** Find the average value of $f(x) = \cos x$ on the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$.
 - **a.** $\frac{2\sqrt{2}}{\pi}$
 - **b.** $\frac{\sqrt{2}}{\pi}$
 - **c.** $\sqrt{2}$
 - **d.** $\frac{1}{\sqrt{2}}$
 - e. $\frac{\pi}{\sqrt{2}}$
- **2.** The ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$ is revolved about the *x*-axis. Which integral gives the volume of the resulting ellipsoid?
 - **a.** $\int_{-2}^{2} 2\pi x \sqrt{16 4x^2} \ dx$
 - **b.** $\int_{-4}^{4} 2\pi (16 4x^2)^2 dx$
 - **c.** $\int_{-2}^{2} \pi (16 4x^2) dx$
 - **d.** $\int_{-4}^{4} 2\pi x \sqrt{16 4x^2} \ dx$
 - **e.** $\int_{-2}^{2} \pi (16 4x^2)^2 dx$
- 3. Compute $\int_{0}^{\pi/4} \cos\theta \sin^3\theta \, d\theta.$
 - **a.** $\frac{1}{2}$

 - **d.** $\frac{1}{16}$
 - **e.** $\frac{1}{32}$

- **4.** Compute $\int_0^{\ln 2} x e^{-x} dx.$
 - **a.** $\frac{1}{2} + \frac{1}{2} \ln 2$
 - **b.** $\frac{1}{2} \frac{1}{2} \ln 2$
 - **c.** $\frac{1}{2} \ln 2 \frac{1}{2}$
 - **d.** $-\frac{1}{2}\ln 2 \frac{1}{2}$
 - e. Divergent
- **5.** Use the Trapezoid Rule with n = 4 intervals to approximate the integral $\int_{1}^{9} (9 + x^2) dx$.
 - **a.** 240
 - **b.** 312
 - **c.** $314\frac{1}{3}$
 - **d.** 320
 - **e.** 400
- **6.** A barrel initially contains 3 cups of sugar dissolved in 4 gallons of water. You then add pure water at the rate of 2 gallons per minute while the mixture is draining out of a hole in the bottom at 2 gallons per minute. Find the amount of sugar in the barrel after 2 minute.
 - a. $\frac{3}{\sqrt{e}}$
 - **b.** $\frac{3}{e}$
 - **c.** 3*e*
 - d. $3\sqrt{e}$
 - **e.** $\frac{3}{e^2}$

- 7. As *n* approaches infinity, the sequence $\left\{\frac{1-\cos n}{n^2}\right\}$
 - **a.** converges to $-\frac{1}{2}$
 - **b.** converges to 0
 - **c.** converges to $\frac{1}{2}$
 - d. converges to 1
 - e. diverges
- 8. Compute $\sum_{n=1}^{\infty} \left(\frac{n}{n+1} \frac{n+1}{n+2} \right)$
 - **a.** $-\frac{1}{2}$
 - **b.** $\frac{1}{2}$
 - **c.** 1
 - **d.** 2
 - e. Divergent
- **9.** Find the 4th degree Taylor polynomial for $f(x) = x^2 x$ about x = 2.

a.
$$T_4(x) = 2 + 3(x-2) + (x-2)^2 + 3(x-2)^3 + (x-2)^4$$

b.
$$T_4(x) = 2 + 3(x-2) + 2(x-2)^2 + 3(x-2)^3 + 2(x-2)^4$$

c.
$$T_4(x) = 2 + 3(x-2) + (x-2)^2$$

d.
$$T_4(x) = 2 + 3(x-2) + 2(x-2)^2$$

e. $T_4(x)$ cannot be found because x=2 is outside the interval of convergence.

- **10.** A triangle has vertices A = (0,3,2), B = (-2,3,0) and C = (-2,0,3). Find the angle at vertex B.

 - b. $\frac{\pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{2\pi}{3}$
 - **e.** $\frac{5\pi}{6}$
- **11.** If \vec{u} points South-West and \vec{v} points Up, which way does $\vec{u} \times \vec{v}$ point?
 - a. South-East
 - **b.** North-East
 - c. North-West
 - **d.** 45° Up from North-West
 - **e.** 45° Down from North-West
- **12.** Find the area of a triangle with edges $\vec{a} = (3, -2, 1)$ and $\vec{b} = (-1, 0, 1)$.
 - **a.** 1
 - **b.** 2
 - **c.** $\sqrt{6}$
 - **d.** 6
 - **e.** $2\sqrt{6}$

13. (12 points) The end of a water trough occupies the region between $y=x^2$ m and y=9 m. It is filled to a depth of y=4 m. Find the force on the end of the trough. Give your answer in terms of ρ (the density of water) and g (the acceleration of gravity).

14. (12 points) Compute
$$\int_{3}^{3\sqrt{2}} \frac{\sqrt{x^2-9}}{x} dx$$
.

15. (12 points) Find the arc length of the curve $y = \frac{x^2}{4} - \frac{\ln x}{2}$ between x = 1 and x = e.

16. (12 points) The Taylor series $f(x) = \sum_{n=1}^{\infty} \frac{n}{2^n} (x-1)^{n-1}$ is obtained by differentiating the series $g(x) = \sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x-1}{2}\right)^n$. What is the function f(x)? What is the interval of convergence for f(x) (including endpoints)? Justify your answers.