Sections 813-815

Version A Solutions

P. Yasskin

Multiple Choice: (5 points each)

- **1.** Find the average value of $f(x) = \cos x$ on the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$.
 - a. $\frac{2\sqrt{2}}{\pi}$ CORRECT
 - **b.** $\frac{\sqrt{2}}{\pi}$
 - **c.** $\sqrt{2}$
 - **d.** $\frac{1}{\sqrt{2}}$
 - e. $\frac{\pi}{\sqrt{2}}$

$$f_{\text{ave}} = \frac{1}{\pi/2} \int_{-\pi/4}^{\pi/4} \cos x \, dx = \frac{2}{\pi} \Big[\sin x \Big]_{-\pi/4}^{\pi/4} = \frac{2}{\pi} \bigg(\frac{1}{\sqrt{2}} \bigg) - \frac{2}{\pi} \bigg(-\frac{1}{\sqrt{2}} \bigg) = \frac{4}{\pi\sqrt{2}} = \frac{2\sqrt{2}}{\pi}$$

- **2.** The ellipse $\frac{x^2}{4} + \frac{y^2}{16} = 1$ is revolved about the *x*-axis. Which integral gives the volume of the resulting ellipsoid?
 - **a.** $\int_{-2}^{2} 2\pi x \sqrt{16 4x^2} dx$
 - **b.** $\int_{-4}^{4} 2\pi (16 4x^2)^2 dx$
 - **c.** $\int_{-2}^{2} \pi (16 4x^2) dx$ CORRECT
 - **d.** $\int_{-4}^{4} 2\pi x \sqrt{16 4x^2} \ dx$
 - **e.** $\int_{-2}^{2} \pi (16 4x^2)^2 dx$

x integral, disks $V = \int_{-2}^{2} \pi y^2 dx = \int_{-2}^{2} \pi (16 - 4x^2) dx$

- **3.** Compute $\int_0^{\pi/4} \cos\theta \sin^3\theta \, d\theta.$
 - **a.** $\frac{1}{2}$
 - **b.** $\frac{1}{4}$
 - **c.** $\frac{1}{8}$
 - d. $\frac{1}{16}$ CORRECT
 - **e.** $\frac{1}{32}$

 $u = \sin\theta$ $du = \cos\theta d\theta$

$$\int_0^{\pi/4} \cos\theta \sin^3\theta \, dx = \left[\frac{\sin^4\theta}{4} \right]_0^{\pi/4} = \frac{1}{4} \frac{1}{\sqrt{2}^4} = \frac{1}{16}$$

4. Compute
$$\int_0^{\ln 2} x e^{-x} dx.$$

a.
$$\frac{1}{2} + \frac{1}{2} \ln 2$$

b.
$$\frac{1}{2} - \frac{1}{2} \ln 2$$
 CORRECT

c.
$$\frac{1}{2} \ln 2 - \frac{1}{2}$$

d.
$$-\frac{1}{2} \ln 2 - \frac{1}{2}$$

e. Divergent

$$\int_0^{\ln 2} x e^{-x} dx = \left[-x e^{-x} + \int e^{-x} dx \right]_0^{\ln 2} = \left[-x e^{-x} - e^{-x} \right]_0^{\ln 2} = \left(-\ln 2 e^{-\ln 2} - e^{-\ln 2} \right) - \left(-1 \right) = -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 2$$

5. Use the Trapezoid Rule with n = 4 intervals to approximate the integral $\int_{1}^{9} (9 + x^2) dx$.

c.
$$314\frac{1}{3}$$

$$\Delta x = \frac{9-1}{4} = 2$$

$$T_4 = \Delta x \left(\frac{1}{2}f(1) + f(3) + f(5) + f(7) + \frac{1}{2}f(9)\right) = 2\left(\frac{1}{2}10 + 18 + 34 + 58 + \frac{1}{2}90\right) = 320$$

6. A barrel initially contains 3 cups of sugar dissolved in 4 gallons of water. You then add pure water at the rate of 2 gallons per minute while the mixture is draining out of a hole in the bottom at 2 gallons per minute. Find the amount of sugar in the barrel after 2 minute.

a.
$$\frac{3}{\sqrt{e}}$$

b.
$$\frac{3}{e}$$
 CORRECT

d.
$$3\sqrt{e}$$

e.
$$\frac{3}{e^2}$$

Let S(t) be the cups of sugar at time t.

$$\frac{dS}{dt} \frac{\text{cups}}{\text{min}} = -2 \frac{\text{gal}}{\text{min}} \frac{S \text{ cups}}{4 \text{ gal}} \qquad \frac{dS}{dt} = -\frac{1}{2}S \qquad S(0) = 3$$

$$S(t) = 3e^{-t/2}$$
 $S(2) = 3e^{-1} = \frac{3}{e}$

7. As
$$n$$
 approaches infinity, the sequence $\left\{\frac{1-\cos n}{n^2}\right\}$

a. converges to
$$-\frac{1}{2}$$

c. converges to
$$\frac{1}{2}$$

Since
$$0 \le \frac{1-\cos n}{n^2} \le \frac{2}{n^2}$$
 and $\lim_{n\to\infty} \frac{2}{n^2} = 0$, the Squeeze Theorem says $\lim_{n\to\infty} \frac{1-\cos n}{n^2} = 0$.

8. Compute
$$\sum_{n=1}^{\infty} \left(\frac{n}{n+1} - \frac{n+1}{n+2} \right)$$

a.
$$-\frac{1}{2}$$
 CORRECT

b.
$$\frac{1}{2}$$

$$S_k = \sum_{n=1}^k \left(\frac{n}{n+1} - \frac{n+1}{n+2}\right) = \left(\frac{1}{2} - \frac{2}{3}\right) + \left(\frac{2}{3} - \frac{3}{4}\right) + \dots + \left(\frac{k}{k+1} - \frac{k+1}{k+2}\right) = \frac{1}{2} - \frac{k+1}{k+2}$$

$$S = \lim_{n \to \infty} \left(\frac{1}{2} - \frac{k+1}{k+2}\right) = -\frac{1}{2}$$

9. Find the 4th degree Taylor polynomial for
$$f(x) = x^2 - x$$
 about $x = 2$.

a.
$$T_4(x) = 2 + 3(x-2) + (x-2)^2 + 3(x-2)^3 + (x-2)^4$$

b.
$$T_4(x) = 2 + 3(x-2) + 2(x-2)^2 + 3(x-2)^3 + 2(x-2)^4$$

c.
$$T_4(x) = 2 + 3(x-2) + (x-2)^2$$
 CORRECT

d.
$$T_4(x) = 2 + 3(x-2) + 2(x-2)^2$$

e. $T_4(x)$ cannot be found because x = 2 is outside the interval of convergence.

$$f(x) = x^2 - x$$
 $f'(x) = 2x - 1$ $f''(x) = 2$ $f^{(n)}(x) = 0$ for $n \ge 3$.
 $f(2) = 2$ $f'(2) = 3$ $f''(2) = 2$ $f^{(n)}(2) = 0$ for $n \ge 3$.

$$f(2) = 2$$
 $f'(2) = 3$ $f''(2) = 2$ $f^{(n)}(2) = 0$ for $n \ge 3$

$$T_4(x) = f(2) + f'(2)(x-2) + \frac{f''(2)}{2}(x-2)^2 = 2 + 3(x-2) + (x-2)^2$$

10. A triangle has vertices
$$A = (0,3,2)$$
, $B = (-2,3,0)$ and $C = (-2,0,3)$. Find the angle at vertex B .

a.
$$\frac{\pi}{6}$$

b.
$$\frac{\pi}{3}$$
 CORRECT

c.
$$\frac{\pi}{2}$$

c.
$$\frac{\pi}{2}$$
 d. $\frac{2\pi}{3}$

e.
$$\frac{5\pi}{6}$$

$$\overrightarrow{BA} = A - B = (2,0,2) \qquad \overrightarrow{BC} = C - B = (0,-3,3) \qquad \overrightarrow{BA} \cdot \overrightarrow{BC} = 6$$

$$\left| \overrightarrow{BA} \right| = \sqrt{4+4} = 2\sqrt{2} \qquad \left| \overrightarrow{BC} \right| = \sqrt{9+9} = 3\sqrt{2}$$

$$\cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\left| \overrightarrow{BA} \right| \left| \overrightarrow{BC} \right|} = \frac{6}{2\sqrt{2}3\sqrt{2}} = \frac{1}{2} \qquad \Rightarrow \qquad \theta = 60^{\circ} = \frac{\pi}{3}$$

11. If
$$\vec{u}$$
 points South-West and \vec{v} points Up, which way does $\vec{u} \times \vec{v}$ point?

- a. South-East
- b. North-East
- c. North-West CORRECT
- d. 45° Up from North-West
- e. 45° Down from North-West

Hold your right fingers South-West with the palm facing Up. Then your thumb points North-West.

12. Find the area of a triangle with edges
$$\vec{a} = (3, -2, 1)$$
 and $\vec{b} = (-1, 0, 1)$.

c.
$$\sqrt{6}$$
 CORRECT

e.
$$2\sqrt{6}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & -2 & 1 \\ -1 & 0 & 1 \end{vmatrix} = \vec{i}(-2 - 0) - \vec{j}(3 + 1) + \vec{k}(0 - 2) = (-2, -4, -2)$$
$$A = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} \sqrt{4 + 16 + 4} = \frac{1}{2} \sqrt{24} = \sqrt{6}$$

(12 points) The end of a water trough occupies 13. the region between $y = x^2$ m and y = 9 m. It is filled to a depth of y = 4 m.

Find the force on the end of the trough.

Give your answer in terms of ρ (the density of water) and g (the acceleration of gravity).

There is only water between y = 0 and y = 4.

The slice at height y is h = 4 - y below the surface and has area

$$dA = w dy = 2x dy = 2\sqrt{y} dy$$
.

So the force is

$$F = \int_0^4 P dA = \int_0^4 \rho g h w dy = \rho g \int_0^4 (4 - y) 2 \sqrt{y} dy = 2\rho g \int_0^4 (4y^{1/2} - y^{3/2}) dy$$
$$= 2\rho g \left[\frac{8y^{3/2}}{3} - \frac{2y^{5/2}}{5} \right]_0^4 = 2\rho g \left(\frac{64}{3} - \frac{64}{5} \right) = 128\rho g \left(\frac{1}{3} - \frac{1}{5} \right) = \frac{256}{15} \rho g$$

14. (12 points) Compute $\int_{2}^{3\sqrt{2}} \frac{\sqrt{x^2-9}}{x} dx.$

$$x = 3 \sec \theta$$
 $dx = 3 \sec \theta \tan \theta d\theta$

$$\int_{3}^{3\sqrt{2}} \frac{\sqrt{x^{2} - 9}}{x} dx = \int_{0}^{\pi/4} \frac{\sqrt{9 \sec^{2}\theta - 9}}{3 \sec \theta} 3 \sec \theta \tan \theta d\theta = 3 \int_{0}^{\pi/4} \tan^{2}\theta d\theta$$
$$= 3 \int_{0}^{\pi/4} \sec^{2}\theta - 1 d\theta = 3 \left[\tan \theta - \theta \right]_{0}^{\pi/4} = 3 \left(1 - \frac{\pi}{4} \right)$$

15. (12 points) Find the arc length of the curve $y = \frac{x^2}{4} - \frac{\ln x}{2}$ between x = 1 and x = e.

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{x}{2} - \frac{1}{2x}\right)^2 = 1 + \frac{1}{4}x^2 - \frac{1}{2} + \frac{1}{4x^2} = \frac{1}{4}x^2 + \frac{1}{2} + \frac{1}{4x^2} = \left(\frac{x}{2} + \frac{1}{2x}\right)^2$$

$$L = \int_{1}^{e} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = \int_{1}^{e} \left(\frac{x}{2} + \frac{1}{2x}\right) dx = \left[\frac{x^{2}}{4} + \frac{\ln x}{2}\right]_{1}^{e} = \left(\frac{e^{2}}{4} + \frac{1}{2}\right) - \left(\frac{1}{4}\right) = \frac{e^{2}}{4} + \frac{1}{4}$$

16. (12 points) The Taylor series $f(x) = \sum_{n=1}^{\infty} \frac{n}{2^n} (x-1)^{n-1}$ is obtained by differentiating the series $g(x) = \sum_{n=0}^{\infty} \frac{(x-1)^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x-1}{2}\right)^n$. What is the function f(x)? What is its interval of convergence for f(x) (including endpoints)? Justify your answers.

g(x) is a geometric series with ratio $r = \frac{x-1}{2}$ and first term a = 1.

So
$$g(x) = \frac{1}{1 - \left(\frac{x-1}{2}\right)} = \frac{2}{3-x}$$
 and it converges for $\left|\frac{x-1}{2}\right| < 1$ or $|x-1| < 2$.

So the center is x = 1 and the radius of convergence is R = 2.

Then $f(x) = g'(x) = \frac{2}{(3-x)^2}$ with center x = 1 and radius of convergence R = 2.

The interval of convergence is (-1,3) except we need to check the endpoints.

At x = -1: $f(-1) = \sum_{n=1}^{\infty} \frac{n}{2^n} (-2)^{n-1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2}$ which diverges by the n^{th} Term Divergence Test.

At
$$x = 3$$
: $f(3) = \sum_{n=1}^{\infty} \frac{n}{2^n} (2)^{n-1} = \sum_{n=1}^{\infty} \frac{n}{2}$ which diverges by the n^{th} Term Divergence Test.

So the interval of convergence is (-1,3).