MATH 152, SPRING 2012 COMMON EXAM II - VERSION A

Last Name:	First Name:
Signature:	Section No:

PART I: Multiple Choice (4 pts each)

1.
$$\int \frac{1}{x^2(x-1)} dx =$$
(a) $\ln|x-1| + \frac{1}{x} + C$
(b) $\ln|x^2(x-1)| + C$
(c) $\ln|x| - \frac{1}{x} - \ln|x-1| + C$
(d) $-\ln|x| + \frac{1}{x} + \ln|x-1| + C$
(e) $\ln|x-1| - \frac{1}{x} + C$

2. The improper integral
$$\int_{1}^{e} \frac{dx}{x \ln x}$$

- (a) diverges to ∞ .
- (b) diverges to $-\infty$.
- (c) converges to 1.
- (d) converges to -1.
- (e) converges to $\frac{1}{e} 1$.

3. Which of the following integrals gives the surface area obtained by rotating the curve
$$y = e^{-4x}$$
, for $0 \le x \le 1$, about the y-axis?

(a)
$$\int_0^1 2\pi e^{-4x} \sqrt{1 + 16e^{-8x}} dx$$

(b)
$$\int_0^1 2\pi x \sqrt{1 + 16e^{-8x}} dx$$

(c)
$$\int_1^{e^{-4}} 2\pi y \sqrt{1 + \frac{1}{16y^2}} dy$$

(d)
$$\int_0^1 \frac{\pi}{2} \sqrt{16y^2 + 1} \, dy$$

(e)
$$\int_0^1 \frac{\pi \ln y}{8} \sqrt{16y^2 + 1} \, dy$$

- 4. Compute $\int_{-1}^{\infty} \frac{dx}{1+x^2}.$
 - (a) $\frac{3\pi}{4}$

 - (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$
 - (d) ∞
 - (e) 0
- 5. By substituting $x = 3 \tan \theta$, the integral $\int_0^3 x^2 \sqrt{x^2 + 9} \, dx$ becomes
 - (a) $\int_0^{\pi/4} 27 \tan^2 \theta \sec \theta \, d\theta$
 - (b) $\int_0^3 27 \tan^2 \theta \sec^3 \theta \, d\theta$
 - (c) $\int_0^{\pi/4} 81 \tan^3 \theta \sec^2 \theta \, d\theta$
 - (d) $\int_0^{\pi/4} 81 \tan^2 \theta \sec^2 \theta \, d\theta$
 - (e) $\int_0^{\pi/4} 81 \tan^2 \theta \sec^3 \theta \, d\theta$
- 6. $\sum_{n=0}^{\infty} \frac{(-1)^n + 2^n}{6^n} =$

 - (a) $\frac{1}{3}$ (b) $\frac{5}{14}$ (c) $\frac{33}{14}$ (d) $\frac{3}{10}$

 - (e) $\frac{27}{10}$

- 7. Find the length of the curve $x=t^2, y=t^3,$ for $0 \le t \le 1$.
 - (a) $\frac{1}{27} \left(13\sqrt{13} 8 \right)$
 - (b) $\frac{2\pi}{27} \left(13\sqrt{13} 8 \right)$
 - (c) $\frac{1}{27} \left(13\sqrt{13} 1 \right)$
 - (d) $\frac{1}{27}$
 - (e) $\frac{2\pi}{27} \left(13\sqrt{13} 1 \right)$
- 8. Which of the following series diverges by the Test for Divergence?
 - (a) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
 - (b) $\sum_{n=1}^{\infty} \sin\left(\frac{\pi}{2} \frac{1}{n}\right)$
 - (c) $\sum_{n=1}^{\infty} \frac{n}{n!}$
 - (d) $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$
 - (e) The Test for Divergence is inconclusive for all of the above series.
- 9. The recursive sequence defined by $a_1 = 2$, $a_{n+1} = 5 \frac{4}{a_n}$ converges. Find the limit.
 - (a) 1
 - (b) 4
 - (c) 5
 - (d) $\frac{5}{2}$
 - (e) 2
- 10. Which of the following statements is true regarding the improper integral $\int_1^\infty \frac{dx}{e^x + \sqrt{x}}$?
 - (a) The integral converges because $\int_1^\infty \frac{dx}{e^x + \sqrt{x}} < \int_1^\infty \frac{dx}{\sqrt{x}}$ and $\int_1^\infty \frac{dx}{\sqrt{x}}$ converges.
 - (b) The integral diverges because $\int_{1}^{\infty} \frac{dx}{e^{x} + \sqrt{x}} > \int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ and $\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$ diverges.
 - (c) The integral diverges because $\int_{1}^{\infty} \frac{dx}{e^{x} + \sqrt{x}} > \int_{1}^{\infty} \frac{dx}{e^{x}}$ and $\int_{1}^{\infty} \frac{dx}{e^{x}}$ diverges.
 - (d) The integral converges because $\int_1^\infty \frac{dx}{e^x + \sqrt{x}} < \int_1^\infty \frac{dx}{e^x}$ and $\int_1^\infty \frac{dx}{e^x}$ converges.
 - (e) The integral converges to 0.

11. The sequence whose terms are $a_n = \frac{n^2 - 1}{n^2}$

- (a) decreases and converges to 1.
- (b) increases and converges to 1.
- (c) decreases and converges to 0.
- (d) increases and converges to 0.
- (e) diverges.

12. Find the surface area obtained by rotating the curve $x = \cos(2t)$, $y = \sin(2t)$, for $0 \le t \le \frac{\pi}{4}$, about the x-axis.

- (a) $\frac{\pi}{4}$
- (b) 2π
- (c) $\frac{\pi}{2}$
- (d) π
- (e) 4π

13. Find the sum of the geometric series $S = \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \dots$

- (a) S = 3
- (b) S = 2
- (c) $S = \frac{2}{3}$
- (d) $S = \frac{4}{15}$
- (e) $S = \frac{4}{3}$

PART II: WORK OUT (52 points total)

<u>Directions</u>: Present your solutions in the space provided. *Show all your work* neatly and concisely and *box your final answer*. You will be graded not merely on the final answer, but also on the quality and correctness of the work leading up to it.

14. (10 pts) Integrate
$$\int \sqrt{16 - 9x^2} dx$$
.

15. (8 pts) Find the sum of the series:
$$S = \sum_{n=1}^{\infty} \left(\cos \frac{\pi}{n} - \cos \frac{\pi}{n+1} \right)$$

16. (10 pts) Integrate $\int \frac{4x^2 - 1}{(x^2 + 1)(x - 2)} dx$.

- 17. If the *n*th partial sum of the series $\sum_{n=1}^{\infty} a_n$ is given by $s_n = \frac{2n+1}{n}$,
 - (i) (5 pts) Find a_{10} .

(ii) (5 pts) Find the sum of the series $S = \sum_{n=1}^{\infty} a_n$.

18. (10 pts) Find the surface area obtained by rotating the curve $y = \frac{x^2}{4} - \frac{1}{2} \ln x$, for $1 \le x \le 2$, about the y-axis.

Last Name:	First Name:	
Section No:		
	MARII 150 CDDING 2012	

MATH 152, SPRING 2012 COMMON EXAM II - VERSION A

Question	Points Awarded	Points
1-13		52
14		10
15		8
16		10
17		10
18		10
		100