Name____ MATH 152 _____ Section____

FINAL EXAM Version A

Spring 2016

Sections 555-557

P. Yasskin

Multiple Choice: (13 problems, 4 points each)

1-13	/52
14	/20
15	/20
16	/5
17	/5
18	/5
Total	/107

1.

New Problem or Modify or Make Your Own Problem

Find the average value of the function $f(x) = \sin(x)$ on the interval [a,b] = [0,Pi].

- **a**. $\frac{2}{\pi}$
- **b**. $\frac{1}{\pi}$
- c. 2π
- **d**. 2
- **e**. 1

2.

Integrals Which are Improper at an Endpoint

New Problem

Problem Statement:

Determine if the following improper integral is convergent or divergent. $\int\limits_{-2}^{\infty} (x+4)^{\frac{-1}{3}} dx$ If convergent, compute it.

If divergent, determine if it is + infinity, - infinity, or neither.

- **a**. converges to $\frac{3}{2^{1/3}}$
- **b**. converges to $-\frac{3}{2^{1/3}}$
- **c**. diverges to ∞
- **d**. diverges to $-\infty$
- **e**. diverges but not to $\pm \infty$

Integration By Parts

Indefinite Integral

Definite Integral

Use integration by parts

to compute the integral:

$$J = \int_{1}^{2} \frac{ln(x)}{x^2} dx$$

a. $\frac{3 - \ln(2)}{2}$

b.
$$\frac{\ln(2) - 3}{2}$$

c.
$$\frac{\ln(2)-1}{2}$$

d.
$$\frac{-\ln(2)}{2}$$

e.
$$\frac{1 - \ln(2)}{2}$$

4.

Trigonometric Integrals

Indefinite Integral

Definite Integral

Use a substitution to compute the integral:

$$J = \int_{0}^{\frac{1}{2}\pi} \sin^3 x \, \mathrm{d}x$$

a.
$$-\frac{1}{4}$$

b.
$$\frac{1}{4}$$

c.
$$\frac{2}{3}$$

d.
$$-\frac{4}{3}$$

e.
$$\frac{4}{3}$$

Integration by Trigonometric Substitution

New Integral

Goal: Evaluate the indefinite integral using a trigonometric substitution:

$$I = \int (x^2 + 16)^{\frac{-3}{2}} dx$$

Simply identify the integral after the substitution.

a.
$$\frac{1}{16} \int \csc^2 \theta \, d\theta$$

b.
$$\frac{1}{64} \int \sec^2 \theta \, d\theta$$

c.
$$\frac{1}{16} \int \sin^3 \theta \, d\theta$$

d.
$$\frac{1}{16} \int \cos\theta \, d\theta$$

e.
$$\frac{1}{64} \int \cos^3 \theta \, d\theta$$

Partial Fractions: Finding Coefficients

New Function Include Completing the Square

Goal: Find the coefficients in the partial fraction expansion: $\frac{-2x^2 - x + 2}{x^2(x - 1)} = \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x - 1}$

Just find A_1 and A_2 .

a.
$$A_1 = -1$$
 $A_2 = -2$

b.
$$A_1 = 1$$
 $A_2 = 2$

c.
$$A_1 = -2$$
 $A_2 = -1$

d.
$$A_1 = 2$$
 $A_2 = 1$

e.
$$A_1 = -2$$
 $A_2 = 1$

New Problem or Modify or Make Your Own Problem

Quit

_ | D | X

The region to the right of $x = 2*y^2$, to the left of x = 4*y, and between y = 0 and y = 2 is rotated about the x-axis. Find the volume swept out.

a. $\frac{8}{3}\pi$

Volume Of Revolution

- **b**. $\frac{16}{3}\pi$
- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{15}\pi$
- **e**. $\frac{256}{15}\pi$

8.

New Problem or Modify or Make Your Own Problem

_ D X

The region to the right of $x = 2*y^2$, to the left of x = 4*y, and between y = 0 and y = 2 is rotated about the y-axis. Find the volume swept out.

- **a**. $\frac{8}{3}\pi$
- **b**. $\frac{16}{3}\pi$
- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{15}\pi$
- **e**. $\frac{256}{15}\pi$

Surface Area Of Solid Of Revolution

New Problem or Modify or Make Your Own Problem

The curve $y = 2/3*x^2$, between x = 0 and x = 1, is rotated about the y-axis. Find the surface area of the surface of revolution.

- **a**. $\frac{49}{36}$
- **b**. $\frac{49}{72}$
- **c**. $\frac{49}{144}$
- **d**. $\frac{49}{36}\pi$
- **e**. $\frac{126}{72}\pi$

10. Work to Lift an Object with a Rope

New Problem

Goal:

Find the work needed to lift a 12 lb object up a 50 ft building using a rope whose density is 4 lb/ft.

- **a**. 5600 ft-lb
- **b**. 5000 ft-lb
- **c**. 3100 ft-lb
- **d**. 2500 ft-lb
- **e**. 600 ft-lb

Goal: Compute the sum of the geometric series (if the sum exists).

$$S = \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 3 \left(-\frac{1}{3} \right)^n$$

- **c**. $\frac{9}{4}$
- e. diverges

12.

- e. diverges

13.

- **a**. 0
- **c.** $arccos(\frac{2}{3})$
- **d.** $arccos\left(\frac{2}{9}\right)$
- **e.** $arccos(\frac{4}{9})$

Work Out (5 questions, Points indicated. Show all you work.)

14. (20 points)

Write your answer as a multiple of ρg where ρ is the density of water and g is the acceleration of gravity. The vertex of the cone is at the bottom.

15. (20 points)

Also find the interval of convergence by checking the endpoints.

a. (2 pts) Identify the center:

b. (8 pts) Find the radius of convergence:

$$R = \underline{\hspace{1cm}}$$

c. (8 pts) Check the endpoints:

d. (2 pts) Summarize the interval of convergence:

16. (5 points) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is absolutely convergent, convergent but not absolutely or divergent. Explain all tests you use.

17. (5 points) The series $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges by the Integral Test.

If it is approximated by its 100^{th} partial sum S_{100} , compute the integral bound on the error in this approximation.

18. (5 points) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}}$.