Name____ MATH 152 _____ Section____

FINAL EXAM Version A

Spring 2016

Sections 555-557

Solutions

P. Yasskin

Multiple Choice: (13 problems, 4 points each)

1-13	/52
14	/20
15	/20
16	/5
17	/ 5
18	/ 5
Total	/107

Average Value of a Function

New Problem or Modify or Make Your Own Problem

Find the average value of the function $f(x) = \sin(x)$ on the interval [a,b] = [0,Pi].

- **a**. $\frac{2}{\pi}$ correct choice
- **b**. $\frac{1}{\pi}$
- c. 2π
- **d**. 2
- **e**. 1

Solution: $f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(x) \, dx = -\frac{1}{\pi} \cos(x) \Big|_{0}^{\pi} = -\frac{1}{\pi} (-1 - 1) = \frac{2}{\pi}$

2.

Integrals Which are Improper at an Endpoint

New Problem

Problem Statement:

Determine if the following improper integral is convergent or divergent. $\int\limits_{-2}^{\infty} (x+4)^{-\frac{1}{3}} dx$ If convergent, compute it.

If divergent, determine if it is + infinity, - infinity, or neither.

- **a.** converges to $\frac{3}{2^{1/3}}$
- **b**. converges to $-\frac{3}{2^{1/3}}$
- c. diverges to ∞ correct choice
- **d**. diverges to $-\infty$
- **e**. diverges but not to $\pm \infty$

Solution: $\int_{-2}^{\infty} (x+4)^{-1/3} dx = \frac{3(x+4)^{2/3}}{2} \Big|_{-2}^{\infty} = \infty - \frac{3(2)^{2/3}}{2} = \infty$

a.
$$\frac{3 - \ln(2)}{2}$$

b.
$$\frac{\ln(2) - 3}{2}$$

c.
$$\frac{\ln(2)-1}{2}$$

d.
$$\frac{-\ln(2)}{2}$$

e.
$$\frac{1-\ln(2)}{2}$$
 correct choice

4.

a.
$$-\frac{1}{4}$$

b.
$$\frac{1}{4}$$

c.
$$\frac{2}{3}$$
 correct choice

d.
$$-\frac{4}{3}$$

e.
$$\frac{4}{3}$$

Solution:

a.
$$\frac{1}{16} \int \csc^2 \theta \, d\theta$$

b.
$$\frac{1}{64} \int \sec^2 \theta \, d\theta$$

c.
$$\frac{1}{16} \int \sin^3 \theta \, d\theta$$

d.
$$\frac{1}{16} \int \cos \theta \, d\theta$$
 correct choice

e.
$$\frac{1}{64} \int \cos^3 \theta \, d\theta$$

Simply identify the integral after the substitution.

Solution:

6.

New Fu	unction	☐ Include Completing the Square		
l: Find	the coefficient	s in the partial	fraction e	xpansion:
0	-2 r ² -r	+2 A ₁	A_{γ}	A2
300 4 0	$\frac{-2x-x}{x^2(x-x)}$	$\frac{1}{X} = \frac{1}{X}$	$+\frac{2}{\sqrt{2}}$	$+\frac{3}{x-1}$

a. $A_1 = -1$ $A_2 = -2$ correct choice **b.** $A_1 = 1$ $A_2 = 2$ **c.** $A_1 = -2$ $A_2 = -1$

b.
$$A_1 = 1$$
 $A_2 = 2$

c.
$$A_1 = -2$$
 $A_2 = -3$

d.
$$A_1 = 2$$
 $A_2 = 1$

e.
$$A_1 = -2$$
 $A_2 = 1$

Just find A_1 and A_2 .

Solution: Clear the denominator: $-2x^2 - x + 2 = A_1x(x-1) + A_2(x-1) + A_3x^2$ (*)

Plug in x = 0: $2 = A_2(-1)$ $A_2 = -2$

Differentiate (*): $-4x - 1 = A_1(2x - 1) + A_2 + A_32x$

Plug in x = 0: $-1 = A_1(-1) + A_2 = -A_1 - 2$ $A_1 = -1$

New Problem or Modify or Make Your Own Problem

Quit

_ | 🗆 | ×

The region to the right of $x = 2*y^2$, to the left of x = 4*y, and between y = 0 and y = 2 is rotated about the x-axis. Find the volume swept out.

- **a**. $\frac{8}{3}\pi$
- **b**. $\frac{16}{3}\pi$ correct choice

Volume Of Revolution

- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{15}\pi$
- **e**. $\frac{256}{15}\pi$

Solution: The region is shown. It is a *y*-integral.

The horizontal slices rotate into cylinders.

$$V = \int_0^2 2\pi r h \, dy = \int_0^2 2\pi (y) (4y - 2y^2) \, dy$$

$$= 2\pi \left[\frac{4y^3}{3} - \frac{2y^4}{4} \right]_0^2 = 2\pi \left(\frac{32}{3} - 8 \right) = \frac{16}{3}\pi$$

8.

New Problem or Modify or Make Your Own Problem

Quit

_ 🗆 x

The region to the right of $x = 2*y^2$, to the left of x = 4*y, and between y = 0 and y = 2 is rotated about the y-axis. Find the volume swept out.

a. $\frac{8}{3}\pi$

Volume Of Revolution

- **b**. $\frac{16}{3}\pi$
- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{15}\pi$
- **e**. $\frac{256}{15}\pi$ correct choice

Solution: The region is shown. It is a *y*-integral.

The horizontal slices rotate into washers.

$$V = \int_0^2 \pi (R^2 - r^2) \, dy = \int_0^2 \pi (16y^2 - 4y^4) \, dy$$
$$= \pi \left[\frac{16y^3}{3} - \frac{4y^5}{5} \right]_0^2 = \pi \frac{5 \cdot 128 - 3 \cdot 128}{15} = \frac{256}{15} \pi$$

Surface Area Of Solid Of Revolution

New Problem or Modify or Make Your Own Problem

The curve $y = 2/3*x^2$, between x = 0 and x = 1, is rotated about the y-axis. Find the surface area of the surface of revolution.

- **a**. $\frac{49}{36}$
- **b**. $\frac{49}{72}$
- **c**. $\frac{49}{144}$
- **d**. $\frac{49}{36}\pi$ correct choice
- **e**. $\frac{126}{72}\pi$

Solution:
$$L = \int_0^1 2\pi r ds = \int_0^1 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_0^1 2\pi x \sqrt{1 + \left(\frac{4}{3}x\right)^2} dx$$

$$= \int_0^1 \frac{2\pi}{3} x \sqrt{9 + 16x^2} dx = \frac{2\pi}{3} \left[\frac{2(9 + 16x^2)^{3/2}}{3 \cdot 32} \right]_0^1 = \frac{\pi}{72} \left[(9 + 16x^2)^{3/2} \right]_0^1$$

$$= \frac{\pi}{72} 25^{3/2} - \frac{\pi}{72} 9^{3/2} = \frac{\pi}{72} (125 - 27) = \frac{49}{36} \pi$$

10. Work to Lift an Object with a Rope

a. 5600 ft-lb

correct choice

New Problem

Find the work needed to lift a 12 lb object up a 50 ft building using a rope whose density is 4 lb/ft.

- **b**. 5000 ft-lb
- **c**. 3100 ft-lb
- **d**. 2500 ft-lb
- **e**. 600 ft-lb

Solution: The work to lift just the 12 lb weight is $W_1 = FD = 12 \text{ lb} \cdot 50 \text{ ft} = 600 \text{ ft-lb}$. Measuring y from the bottom of the building, the work to lift just the rope is

$$W_2 = \int_0^{50} D dF = \int_0^{50} (50 - y) 4 dy = [200y - 2y^2]_0^{50} = 5000 \text{ ft-lb.}$$

So the total work is W = 600 + 5000 = 5600 ft-lb

b. $-\frac{3}{4}$ correct choice

c.
$$\frac{9}{4}$$

d.
$$\frac{9}{2}$$

e. diverges

Solution: $a = 3\left(-\frac{1}{3}\right) = -1$ $r = -\frac{1}{3}$ $S = \frac{a}{1-r} = \frac{-1}{1+\frac{1}{3}} = -\frac{3}{4}$

12.

a. $\frac{1}{2}$ correct choice

b.
$$\frac{1}{3}$$

c.
$$\frac{1}{6}$$

d.
$$\frac{1}{6!}$$

e. diverges

Solution: $e^u = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \cdots$ $e^{x^3} = 1 + x^3 + \frac{x^6}{2} + \frac{x^9}{6} + \cdots$ $L = \lim_{r \to 0} \frac{1 + x^3 + \frac{x^6}{2} + \frac{x^9}{6} + \dots - x^3 - 1}{r^6} = \lim_{x \to 0} \left(\frac{1}{2} + \frac{x^3}{6} + \dots\right) = \frac{1}{2}$

13.

b.
$$\frac{\pi}{2}$$
 correct choice

c.
$$arccos(\frac{2}{3})$$

d.
$$arccos(\frac{2}{9})$$

e.
$$arccos(\frac{4}{9})$$

Solution: $\overrightarrow{AB} = (-3, -6, -6)$ $\overrightarrow{AC} = (2, -2, 1)$ $|\overrightarrow{AB}| = \sqrt{9 + 36 + 36} = 9$ $|\overrightarrow{AC}| = \sqrt{4 + 4 + 1} = 3$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = -6 + 12 - 6 = 0$ $\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|} = \frac{0}{9 \cdot 3} = 0 \qquad \theta = \frac{\pi}{2}$

Work Out (5 questions, Points indicated. Show all you work.)

14. (20 points)

Write your answer as a multiple of ρg where ρ is the density of water and g is the acceleration of gravity. The vertex of the cone is at the bottom.

Solution: Put y = 0 at the bottom of the tank. The slice at height y is lifted a distance D = 6 - y.

It is a thin disk of radius r satisfying $\frac{r}{y} = \frac{1}{6}$. So $r = \frac{1}{6}y$. The area of the disk is $A = \pi r^2 = \frac{\pi y^2}{36}$.

The volume of the disk is $dV = \frac{\pi y^2}{36} dy$. The weight of the disk is $dF = \rho g dV = \rho g \frac{\pi y^2}{36} dy$.

$$W = \int D \cdot dF = \frac{\pi \rho g}{36} \int_0^6 (6 - y) y^2 \, dy = \frac{\pi \rho g}{36} \left[2y^3 - \frac{y^4}{4} \right]_0^6 = \frac{\pi \rho g}{36} \left(2 \cdot 6^3 - \frac{6^4}{4} \right)$$
$$= 6\pi \rho g \left(2 - \frac{6}{4} \right) = 3\pi \rho g$$

15. (20 points)

Also find the interval of convergence by checking the endpoints.

a. (2 pts) Identify the center:

$$a = \underline{\qquad} 6$$

b. (8 pts) Find the radius of convergence:

Solution: Apply the Ratio Test:

$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)^5 |x-6|^{n+1}}{5^{n+1}} \frac{5^n}{n^5 |x-6|^n} = \frac{|x-6|}{5} \lim_{n \to \infty} \frac{(n+1)^5}{n^5} = \frac{|x-6|}{5} < 1$$

$$|x-6| < 5 \quad 1 < x < 11$$

$$R = \underline{\qquad 5}$$

c. (8 pts) Check the endpoints:

Solution:

$$x = 1$$
: $\sum_{n=1}^{\infty} \frac{n^5(-5)^n}{5^n} = \sum_{n=1}^{\infty} (-1)^n n^5$ $\lim_{n \to \infty} (-1)^n n^5 = \text{divergent } \neq 0$

Diverges by the $n^{\rm th}$ -Term Divergence Test

$$x = 11$$
: $\sum_{n=1}^{\infty} \frac{n^5(5)^n}{5^n} = \sum_{n=1}^{\infty} n^5$ $\lim_{n \to \infty} n^5 = \infty \neq 0$

Diverges by the n^{th} -Term Divergence Test

d. (2 pts) Summarize the interval of convergence:

$$I = \underline{\qquad (1,11)}$$

16. (5 points) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is absolutely convergent, convergent but not absolutely or divergent. Explain all tests you use.

Solution: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is convergent by the Alternating Series Test since the $(-1)^n$ says it is alternating, $\frac{1}{n^{1/3}}$ is decreasing and $\lim_{n\to\infty} \frac{1}{n^{1/3}} = 0$.

The related absolute series is $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ which is divergent because it is a *p*-series with

$$p=\frac{1}{3}<1.$$

So $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is convergent but not absolutely.

17. (5 points) The series $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges by the Integral Test.

If it is approximated by its 100^{th} partial sum S_{100} , compute the integral bound on the error in this approximation.

Solution: The bound is

$$|E_7| = |S - S_{100}| < \int_{100}^{\infty} \frac{1}{n^2 + 1} dn = \left[\arctan(n)\right]_{100}^{\infty} = \frac{\pi}{2} - \arctan(100) \quad (\approx 0.01)$$

18. (5 points) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}}$.

Solution:
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 So $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}} = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$