Name **MATH 152**

Section

FINAL EXAM Version B

Sections 555-557

P. Yasskin

Spring 2016

Multiple Choice: (13 problems, 4 points each)

1-13	/52
14	/20
15	/20
16	/ 5
17	/5
18	/ 5
Total	/107

1.

Average Value of a Function Modify or Make Your Own Problem New Problem

Find the average value of the function $f(x) = \sin(x)$ on the interval [a,b] = [0,Pi].

- C. 1
- d. 2
- 2π e.

2.

Integrals Which are Improper at an Endpoint New Problem Problem Statement: Determine if the following improper integral is convergent or divergent. If convergent, compute it. If divergent, determine if it is + infinity, - infinity, or neither.

- **a**. converges to $\frac{3}{2^{1/3}}$
- **b**. converges to $-\frac{3}{2^{1/3}}$
- **c**. diverges to $-\infty$
- **d**. diverges to ∞
- **e**. diverges but not to $\pm \infty$

a.
$$-e^{-2}$$

b.
$$-e^{-2} - 1$$

c.
$$1 - e^{-2}$$

d.
$$1 - 3e^{-2}$$

e.
$$1 + e^{-2}$$

4.

Trigonometric Integrals

Indefinite Integral

Definite Integral

Use a substitution to compute the integral:

 $J = \int_{0}^{\frac{1}{2}\pi} \sin^{3}x \, dx$

a.
$$-\frac{4}{3}$$

b.
$$-\frac{1}{4}$$

c.
$$\frac{1}{4}$$

d.
$$\frac{2}{3}$$

e.
$$\frac{4}{3}$$

Integration by Trigonometric Substitution

New Integral

Goal: Evaluate the indefinite integral using a trigonometric substitution:

$$I = \int (x^2 + 16)^{\frac{-3}{2}} dx$$

Simply identify the integral after the substitution.

a.
$$\frac{1}{16} \int \csc^2 \theta \, d\theta$$

b.
$$\frac{1}{64} \int \sec^2 \theta \, d\theta$$

$$\mathbf{c}. \quad \frac{1}{16} \int \sin^3 \theta \, d\theta$$

$$\mathbf{d.} \quad \frac{1}{64} \int \cos^3 \theta \, d\theta$$

e.
$$\frac{1}{16} \int \cos \theta \, d\theta$$

6.

Partial Fractions: Finding Coefficients

New Function

Include Completing the Square

Goal: Find the coefficients in the partial fraction expansion: $\frac{-2x^2 - x + 2}{x^2(x - 1)} = \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x - 1}$

Just find A_1 and A_2 .

a.
$$A_1 = 1$$
 $A_2 = 2$

b.
$$A_1 = -1$$
 $A_2 = -2$

c.
$$A_1 = 2$$
 $A_2 = 1$

d.
$$A_1 = -2$$
 $A_2 = -1$

e.
$$A_1 = -2$$
 $A_2 = 1$

Volume Of Revolution _ | U X New Problem or Modify or Make Your Own Problem Quit The region above $y = 2*x^2$, below y = 4*x, between x = 0 and x = 2 is rotated about the x-axis. Find the volume swept out.

- a. $\frac{256}{15}\pi$ b. $\frac{16}{15}\pi$ c. $\frac{256}{3}\pi$ d. $\frac{16}{3}\pi$ e. $\frac{8}{3}\pi$

8.

Volume Of Revolution _ | D | X | New Problem or Modify or Make Your Own Problem Quit The region above $y = 2*x^2$, below y = 4*x, between x = 0 and x = 2 is rotated about the y-axis. Find the volume swept out.

Surface Area Of Solid Of Revolution

New Problem or Modify or Make Your Own Problem

The curve $x = 2/3*y^2$, between y = 0 and y = 1, is rotated about the x-axis. Find the surface area of the surface of revolution.

- **a**. $\frac{126}{72}\pi$
- **b**. $\frac{49}{36}\pi$
- **c**. $\frac{49}{144}$
- **d**. $\frac{49}{72}$
- **e**. $\frac{49}{36}$

10.

Work to Lift an Object with a Rope

New Problem

Goal:

Find the work needed to lift a 10 lb object up a 20 ft building using a rope whose density is 5 lb/ft.

- **a**. 200 ft-lb
- **b**. 500 ft-lb
- **c**. 700 ft-lb
- **d**. 1000 ft-lb
- **e**. 1200 ft-lb

- **c**. $\frac{20}{3}$
- **d**. $\frac{20}{7}$
- e. diverges

12.

- **a**. $-\frac{1}{9!}$

- e. diverges

13.

- **a**. 0
- **c.** $arccos(\frac{2}{3})$
- **d.** $arccos\left(\frac{2}{9}\right)$
- **e.** $arccos(\frac{4}{9})$

Work Out (5 questions, Points indicated. Show all you work.)

14. (20 points)

Write your answer as a multiple of ρg where ρ is the density of water and g is the acceleration of gravity. The vertex of the cone is at the bottom.

15. (20 points)

Center And Radius of Convergence of a Power Series Goal: Find the center and radius of convergence of the series: $\sum_{n=1}^{\infty} \frac{n (x-8)^n}{4^n}$

Also find the interval of convergence by checking the endpoints.

a. (2 pts) Identify the center:

a = _____

b. (8 pts) Find the radius of convergence:

R =

c. (8 pts) Check the endpoints:

d. (2 pts) Summarize the interval of convergence:

I =

16. (5 points) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is absolutely convergent, convergent but not absolutely or divergent. Explain all tests you use.

17. (5 points) The series $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges by the Integral Test.

If it is approximated by its 100^{th} partial sum S_{100} , compute the integral bound on the error in this approximation.

18. (5 points) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}}$.