Name **MATH 152**

Sections 555-557

Section

FINAL EXAM Version B

Solutions

P. Yasskin

Spring 2016

Multiple Choice: (13 problems, 4 points each)

1-13	/52
14	/20
15	/20
16	/ 5
17	/ 5
18	/ 5
Total	/107

Average Value of a Function 1.

or Modify or Make Your Own Problem

Find the average value of the function $f(x) = \sin(x)$ on the interval [a,b] = [0,Pi].

- correct choice
- C.
- d. 2
- 2π e.

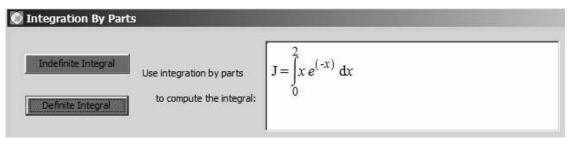
Solution: $f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(x) \, dx = -\frac{1}{\pi} \cos(x) \Big|_{0}^{\pi} = -\frac{1}{\pi} (-1 - 1) = \frac{2}{\pi}$

2.

Integrals Which are Improper at an Endpoint Determine if the following improper integral is convergent or divergent. If convergent, compute it. If divergent, determine if it is + infinity, - infinity, or neither.

- **a**. converges to $\frac{3}{2^{1/3}}$
- **b**. converges to $-\frac{3}{2^{1/3}}$
- **c**. diverges to $-\infty$
- **d**. diverges to ∞ correct choice
- **e**. diverges but not to $\pm \infty$

Solution: $\int_{-2}^{\infty} (x+4)^{-1/3} dx = \frac{3(x+4)^{2/3}}{2} \bigg|_{-\infty}^{\infty} = \infty - \frac{3(2)^{2/3}}{2} = \infty$



a.
$$-e^{-2}$$

b.
$$-e^{-2} - 1$$

c.
$$1 - e^{-2}$$

d.
$$1-3e^{-2}$$
 correct choice

e.
$$1 + e^{-2}$$

Solution:

4. **I**

a.
$$-\frac{4}{3}$$

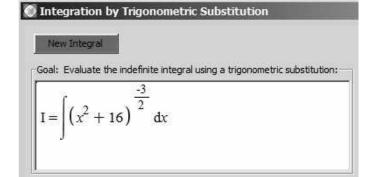
b.
$$-\frac{1}{4}$$

c.
$$\frac{1}{4}$$

d.
$$\frac{2}{3}$$
 correct choice

e.
$$\frac{4}{3}$$

Solution:



a.
$$\frac{1}{16} \int \csc^2 \theta \, d\theta$$

b.
$$\frac{1}{64} \int \sec^2 \theta \, d\theta$$

c.
$$\frac{1}{16} \int \sin^3 \theta \, d\theta$$

$$\mathbf{d.} \quad \frac{1}{64} \int \cos^3 \theta \, d\theta$$

e.
$$\frac{1}{16} \int \cos \theta \, d\theta$$
 correct choice

Simply identify the integral after the substitution.

Solution:

6.

☐ Include Completing the Square
ients in the partial fraction expansion:
$\frac{-x+2}{(x-1)} = \frac{-1}{x} + \frac{2}{x^2} + \frac{3}{x-1}$

a.
$$A_1 = 1$$
 $A_2 = 2$

b.
$$A_1 = -1$$
 $A_2 = -2$ correct choice

c.
$$A_1 = 2$$
 $A_2 = 1$

d.
$$A_1 = -2$$
 $A_2 = -1$

e.
$$A_1 = -2$$
 $A_2 = 1$

Just find A_1 and A_2 .

Solution: Clear the denominator: $-2x^2 - x + 2 = A_1x(x-1) + A_2(x-1) + A_3x^2$ (*)

Plug in x = 0: $2 = A_2(-1)$ $A_2 = -2$

Differentiate (*): $-4x - 1 = A_1(2x - 1) + A_2 + A_32x$

Plug in x = 0: $-1 = A_1(-1) + A_2 = -A_1 - 2$ $A_1 = -1$

New Problem or Modify or Make Your Own Problem

Quit

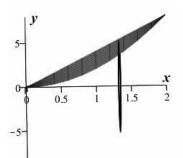
The region above y = 2*x^2, below y = 4*x, between x = 0 and x = 2 is rotated about the x-axis. Find the volume swept out.

- **a**. $\frac{256}{15}\pi$ correct choice
- **b**. $\frac{16}{15}\pi$
- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{3}\pi$
- **e**. $\frac{8}{3}\pi$

Solution: The region is shown. It is an x-integral.

The vertical slices rotate into washers.

$$V = \int_0^2 \pi (R^2 - r^2) dx = \int_0^2 \pi (16x^2 - 4x^4) dx$$
$$= \pi \left[\frac{16x^3}{3} - \frac{4x^5}{5} \right]_0^2 = \pi \frac{5 \cdot 128 - 3 \cdot 128}{15} = \frac{256}{15} \pi$$



8.

New Problem or Modify or Make Your Own Problem
Quit The region above $y = 2*x^2$, below y = 4*x, between x = 0 and x = 2 is rotated about the y-axis. Find the volume swept out.

a. $\frac{256}{15}\pi$

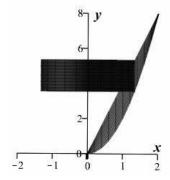
Volume Of Revolution

- **b**. $\frac{16}{15}\pi$
- **c**. $\frac{256}{3}\pi$
- **d**. $\frac{16}{3}\pi$ correct choice
- e. $\frac{8}{3}\pi$

Solution: The region is shown. It is an *x*-integral.

The vertical slices rotate into cylinders.

$$V = \int_0^2 2\pi r h \, dx = \int_0^2 2\pi (y) (4x - 2x^2) \, dx$$
$$= 2\pi \left[\frac{4x^3}{3} - \frac{2x^4}{4} \right]_0^2 = 2\pi \left(\frac{32}{3} - 8 \right) = \frac{16}{3}\pi$$



_ | D | X |

Surface Area Of Solid Of Revolution

New Problem

Modify or Make Your Own Problem

The curve $x = 2/3*y^2$, between y = 0 and y = 1, is rotated about the x-axis. Find the surface area of the surface of revolution.

a.
$$\frac{126}{72}\pi$$

b.
$$\frac{49}{36}\pi$$
 correct choice

c.
$$\frac{49}{144}$$

d.
$$\frac{49}{72}$$

e.
$$\frac{49}{36}$$

Solution:
$$L = \int_0^1 2\pi r ds = \int_0^1 2\pi y \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy = \int_0^1 2\pi y \sqrt{\left(\frac{4}{3}y\right)^2 + 1} dy$$

$$= \int_0^1 \frac{2\pi}{3} y \sqrt{16y^2 + 9} dy = \frac{2\pi}{3} \left[\frac{2(16y^2 + 9)^{3/2}}{3 \cdot 32} \right]_0^1 = \frac{\pi}{72} \left[(16x^2 + 9)^{3/2} \right]_0^1$$

$$= \frac{\pi}{72} 25^{3/2} - \frac{\pi}{72} 9^{3/2} = \frac{\pi}{72} (125 - 27) = \frac{49}{36} \pi$$

10. Work to Lift an Object with a Rope

New Problem

Find the work needed to lift a 10 lb object up a 20 ft building using a rope whose density is 5 lb/ft.

a. 200 ft-lb

b. 500 ft-lb

c. 700 ft-lb

d. 1000 ft-lb

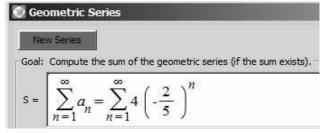
1200 ft-lb correct choice

Solution: The work to lift just the 10 lb weight is $W_1 = FD = 10 \, \text{lb} \cdot 20 \, \text{ft} = 200 \, \text{ft-lb}$.

Measuring y from the bottom of the building, the work to lift just the rope is

$$W_2 = \int_0^{20} D dF = \int_0^{20} (20 - y) 5 dy = \left[100y - \frac{5}{2}y^2\right]_0^{20} = 1000 \text{ ft-lb.}$$

So the total work is W = 200 + 1000 = 1200 ft-lb



a. $-\frac{8}{7}$ correct choice

b.
$$-\frac{8}{3}$$

c.
$$\frac{20}{3}$$

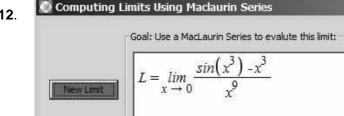
d.
$$\frac{20}{7}$$

e. diverges

Solution: $a = 4\left(-\frac{2}{5}\right) = -\frac{8}{5}$ $r = -\frac{2}{5}$ $S = \frac{a}{1-r} = \frac{-\frac{8}{5}}{1+\frac{2}{5}} = -\frac{8}{7}$

$$S = \frac{a}{1-r} = \frac{-\frac{8}{5}}{1+\frac{2}{5}} = -\frac{8}{7}$$

12.



a. $-\frac{1}{9!}$

b. $-\frac{1}{6}$ correct choice

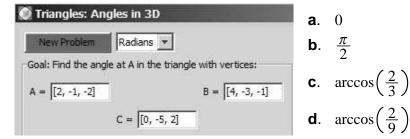
c.
$$\frac{1}{6}$$

d.
$$\frac{1}{9!}$$

e. diverges

Solution: $\sin(u) = u - \frac{u^3}{3!} + \frac{u^5}{5!} \cdots \qquad \sin(x^3) = x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} \cdots$ $L = \lim_{x \to 0} \frac{x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} \cdots - x^3}{x^9} = \lim_{x \to 0} \left(-\frac{1}{3!} + \frac{x^6}{5!} + \cdots \right) = -\frac{1}{6!}$

13.

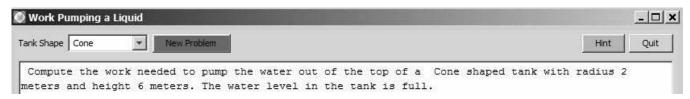


- **d.** $arccos(\frac{2}{9})$
- **e.** $arccos(\frac{4}{9})$ correct choice

Solution: $\overrightarrow{AB} = (2, -2, 1)$ $\overrightarrow{AC} = (-2, -4, 4)$ $|\overrightarrow{AB}| = \sqrt{4+4+1} = 3$ $|\overrightarrow{AC}| = \sqrt{4+16+16} = 6$ $\overrightarrow{AB} \cdot \overrightarrow{AC} = -4+8+4=8$ $\cos \theta = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|} = \frac{8}{3 \cdot 6} = \frac{4}{9} \qquad \theta = \arccos\left(\frac{4}{9}\right)$

Work Out (5 questions, Points indicated. Show all you work.)

14. (20 points)



Write your answer as a multiple of ρg where ρ is the density of water and g is the acceleration of gravity. The vertex of the cone is at the bottom.

Solution: Put y = 0 at the bottom of the tank. The slice at height y is lifted a distance D = 6 - y.

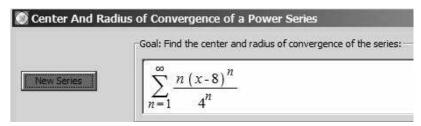
It is a thin disk of radius r satisfying $\frac{r}{y} = \frac{2}{6}$. So $r = \frac{1}{3}y$. The area of the disk is $A = \pi r^2 = \frac{\pi y^2}{9}$.

The volume of the disk is $dV = \frac{\pi y^2}{9} dy$. The weight of the disk is $dF = \rho g dV = \rho g \frac{\pi y^2}{9} dy$.

So the work is

$$W = \int D \cdot dF = \frac{\pi \rho g}{9} \int_0^6 (6 - y) y^2 dy = \frac{\pi \rho g}{9} \left[2y^3 - \frac{y^4}{4} \right]_0^6 = \frac{\pi \rho g}{9} \left(2 \cdot 6^3 - \frac{6^4}{4} \right)$$
$$= 24\pi \rho g \left(2 - \frac{6}{4} \right) = 12\pi \rho g$$

15. (20 points)



Also find the interval of convergence by checking the endpoints.

a. (2 pts) Identify the center:

$$a = 8$$

b. (8 pts) Find the radius of convergence:

Solution: Apply the Ratio Test:

$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(n+1)|x-8|^{n+1}}{4^{n+1}} \frac{4^n}{n|x-8|^n} = \frac{|x-8|}{4} \lim_{n \to \infty} \frac{(n+1)}{n} = \frac{|x-8|}{4} < 1$$

$$|x-8| < 4 \quad 4 < x < 12$$

$$R = 4$$

c. (8 pts) Check the endpoints:

Solution

$$x = 4$$
: $\sum_{n=1}^{\infty} \frac{n(-4)^n}{4^n} = \sum_{n=1}^{\infty} (-1)^n n$ $\lim_{n \to \infty} (-1)^n n = \text{divergent } \neq 0$

Diverges by the $n^{\rm th}$ -Term Divergence Test

$$x = 12$$
: $\sum_{n=1}^{\infty} \frac{n(4)^n}{4^n} = \sum_{n=1}^{\infty} n \quad \lim_{n \to \infty} n = \infty \neq 0$

Diverges by the n^{th} -Term Divergence Test

d. (2 pts) Summarize the interval of convergence:

$$I = (4, 12)$$

16. (5 points) Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is absolutely convergent, convergent but not absolutely or divergent. Explain all tests you use.

Solution: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is convergent by the Alternating Series Test since the $(-1)^n$ says it is alternating, $\frac{1}{n^{1/3}}$ is decreasing and $\lim_{n\to\infty} \frac{1}{n^{1/3}} = 0$.

The related absolute series is $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ which is divergent because it is a *p*-series with

$$p=\frac{1}{3}<1.$$

So $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/3}}$ is convergent but not absolutely.

17. (5 points) The series $S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ converges by the Integral Test.

If it is approximated by its 100^{th} partial sum S_{100} , compute the integral bound on the error in this approximation.

Solution: The bound is

$$|E_7| = |S - S_{100}| < \int_{100}^{\infty} \frac{1}{n^2 + 1} dn = \left[\arctan(n)\right]_{100}^{\infty} = \frac{\pi}{2} - \arctan(100) \quad (\approx 0.01)$$

18. (5 points) Compute the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}}$.

Solution:
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
 So $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{(2n+1)! 3^{2n+1}} = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$