Part I: Multiple Choice (5 points each)

There is no partial credit. You may not use a calculator.

1. Find the area of the region bounded by the curves

$$x = 0$$
, $x = 1 + y^2$, $y = 1$, $y = 3$.

- (A) 11
- (B) $\frac{40}{3}$
- (C) 12
- (D) $\frac{32}{3}$
- (E) 10

- 2. Find the average value of the function $f(x) = e^{-3x}$ on the interval [0,2].
 - (A) $\frac{1}{6}(1-e^{-6})$
 - (B) $\frac{3}{2}(1+e^6)$
 - (C) 0
 - (D) $\frac{1}{3}(1-e^{-6})$
 - (E) $\frac{1}{2}(e^{-6}-1)$

- 3. Calculate $\int_0^{\pi/4} \sin^2 x \, dx$.
 - (A) $\frac{\pi}{8} \frac{1}{2}$
 - (B) $\frac{\pi}{4} \frac{1}{2}$
 - (C) $\frac{\pi}{8} \frac{1}{4}$
 - (D) $\frac{\pi}{8} + \frac{1}{2}$
 - (E) $\frac{\pi}{4} + \frac{1}{4}$

- 4. An object is moved along the x-axis by a force of magnitude $F(x) = \frac{1}{1+x^2}$. How much work is done as the object moves from x = 0 to x = 1?
 - (A) π
 - (B) $\frac{\pi}{16}$
 - (C) $\ln 2$
 - (D) $\frac{\pi}{4}$
 - (E) $\ln 8 \ln 2$

- 5. The area bounded by the curves $x^2 = y$ and x + y = 2 is
 - (A) 5
 - (B) $\frac{3}{2}$
 - (C) $\frac{9}{2}$
 - (D) π
 - (E) $\frac{\pi}{2}$

- 6. A trigonometric substitution converts the integral $\int \frac{x}{(3-2x-x^2)^{1/2}} dx$ to
 - (A) $\int (3\cos\theta + 2) d\theta$
 - (B) $\int (2\sin\theta 1) d\theta$
 - (C) $\int (2\sin^2\theta \cos\theta) \, d\theta$
 - (D) $\int (2 \tan \theta 1) d\theta$
 - (E) $\int 2 \tan^{-1} \theta \, d\theta$

- 7. Suppose that f(0) = 3 and f(2) = 4 and $\int_0^2 x^2 f(x) dx = 5$. What is $\int_0^2 x^3 f'(x) dx$? (Hint: Use integration by parts. Assume that f(x) is a differentiable function and that f'(x) is continuous.)
 - (A) 60
 - (B) 47
 - (C) 33
 - (D) 27
 - (E) 17

- 8. The region bounded by the curves x=0, x=1+y, y=0, y=2is rotated about the y-axis. Find the volume of the resulting solid.
 - (A) $\frac{26\pi}{3}$
 - (B) $\frac{80\pi}{3}$
 - (C) $\frac{22\pi}{3}$
 - (D) $\frac{32\pi}{3}$
 - (E) $\frac{62\pi}{3}$

- 9. Calculate $\int_1^e \frac{\ln x}{x^2} dx$.
 - (A) $e^2 1$
 - (B) 0
 - (C) 1
 - (D) $1 \frac{2}{e}$
 - (E) $2 e^2$

- 10. The base of a solid is the triangle with vertices (0,0), (1,1), and (1,-1). The cross sections perpendicular to the x-axis are squares. Find the volume.
 - (A) $\frac{1}{3}$
 - (B) $\frac{2}{3}$
 - (C) $\frac{4}{3}$
 - (D) $\frac{16}{3}$
 - (E) $\frac{32}{3}$

Name (print): _______ Section: ______ Page 7 Form A 152-01a-1

Part II: Write Out (10 points each)

Show all your work. Appropriate partial credit will be given. You may not use a calculator.

11. Evaluate
$$\int x^2 \sin(4x) dx$$
.

12. Evaluate
$$\int \frac{\sin^3 x}{\cos^4 x} dx$$
.

Name	(print):	Section:	Page 8	Form A	152-01a-1
ranic	(Pillio).	. Decement.	- 1 age e	10111111	102 010 1

- 13. Set up (but DO NOT EVALUATE) the integrals to compute the volumes of the indicated solids of revolution. CLEARLY INDICATE IN EACH CASE WHETHER YOU ARE WRITING A CYLINDER-SHELL FORMULA OR A DISKS/WASHERS FORMULA.
 - (a) Revolve the region bounded by $y = \sin x$, y = 0, x = 0, $x = \pi$ about the line x = 0 (the y-axis).

(b) Revolve the region bounded by $y = \sin x$, y = 0, x = 0, $x = \pi$ about the line y = 2.

14. Evaluate $\int \frac{1}{\sqrt{x^2 - 9}} dx$.

Name	(print)	:	Section:	Page 9	Form A	152-01a-1
------	---------	---	----------	--------	--------	-----------

- 15. Do **ONE** of the following [(A) or (B)]. CIRCLE THE LETTER of the one you want graded!
 - (A) A 10-kilogram object at ground level is attached by a cable with a mass density of $\frac{1}{4}$ kg/m to a winch at the top of a 40-meter high building. How much work (in joules) is required to crank this load up to the roof? (The acceleration of gravity in MKS units is g = 9.8.)
 - (B) A tank (trough) 8 feet long has cross sections that are isosceles triangles (with base side on top) whose base and altitude are both 3 feet. If the tank is initially full of water, how much work is required to pump all the water out over the top? (Water weighs 62.5 pounds per cubic foot.)

