Name (print):	Section:	Page 2	Form B	152-01a-2	
Part I: Multiple Choice (5 points each) There is no partial credit. You may not use a calculator.					
1. A cube, with edges of length 2 meters is 5 meters deep. Find the force due cube. (Let ρ be the mass density of wkg/m ³ and $g = 9.8$ m/s ² , but you do	e to water pressurater and g be th	ire on any one le acceleration o	vertical s	side of the	
(A) $20\rho g$					
(B) $50\rho g$					
(C) $4\rho g$					
(D) $12\rho g$					
(E) $16\rho g$					
2. Find the force due to water pressure on	the top surface of	of the cube in th	e previou	s problem.	
(A) $20\rho g$					
(B) $50\rho g$					
(C) $4\rho g$					
(D) $12\rho g$					
(E) $16\rho g$					

- 3. The improper integral $\int_0^4 \frac{dx}{\sqrt{x}}$
 - (A) converges to the value 4
 - (B) diverges, by comparison with the integral $\int_0^4 \frac{dx}{x^2}$
 - (C) converges to the value 3
 - (D) converges to the value $\frac{1}{2}$
 - (E) converges, by comparison with the integral $\int_0^4 \frac{dx}{x^2}$

- 4. Set up the integral for the arc length of the curve $y = \frac{x^3}{6}$ between x = 1 and x = 2.
 - (A) $\frac{\pi}{36} \int_{1}^{2} x^{6} dx$
 - (B) $\int_{1}^{2} \sqrt{1 + \frac{x^4}{4}} \, dx$
 - (C) $\int_{1}^{2} \sqrt{1 + \frac{x^2}{2}} dx$
 - (D) $\frac{\pi}{3} \int_{1}^{2} x^4 dx$
 - (B) $\int_{1}^{2} \sqrt{1 + \frac{x^6}{36}} dx$

- 5. The improper integral $\int_{e}^{\infty} \frac{dx}{x \ln x}$
- [Hint: Let $u = \ln x$.]
- (A) converges to the value -1
- (B) converges to the value 0
- (C) converges, by comparison with the integral $\int_{0}^{\infty} \frac{dx}{x}$
- (D) converges to the value -e
- (E) diverges to $+\infty$

6. Set up the integral for the arc length of the parametrized curve segment

$$x(t) = \sin 2t, \quad y(t) = 3\cos 2t, \qquad 0 \le t \le \frac{\pi}{4}.$$

(A)
$$\int_0^{\pi/4} \left(1 + \sqrt{4\cos^2 2t + 36\sin^2 2t}\right) dt$$

(B)
$$\int_0^{\pi/4} \sqrt{1 + 2\cos 2t + 9\sin 2t} \, dt$$

(C)
$$\int_0^{\pi/4} \sqrt{4\cos^2 2t + 36\sin^2 2t} \, dt$$

(D)
$$\int_0^{\pi/4} \sqrt{1 + \sin^2 2t + 9\cos^2 2t} \, dt$$

(E)
$$\int_0^{\pi/4} \sqrt{4\sin^2 2t + 6\cos^2 2t} \, dt$$

7. To find the partial-fraction decomposition of $\frac{3x^4 + 9x^3 + 9x^2 + x + 8}{(x^2 + 4x + 5)(x - 1)^2(x + 2)}$ you would start from the form

(A)
$$\frac{A}{x+2} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4x+5} + \frac{Ex+F}{(x^2+4x+5)^2}$$

(B)
$$\frac{A}{x+2} + \frac{B}{x-1} + \frac{Cx+D}{x^2+4x+5}$$

(C)
$$\frac{A}{x+2} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)} + \frac{Dx+E}{x^2+4x+5}$$

(D)
$$\frac{A}{x+2} + \frac{B}{(x-1)^2} + \frac{C}{x^2+4x+5}$$

(E)
$$3x^2 + \frac{A}{x+2} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+4x+5}$$

- 8. An integrating factor for the differential equation $\frac{dy}{dx} + \frac{3y}{x} = \cos x$ is
 - (A) $e^{\sin x}$
 - (B) x^3
 - (C) 3x
 - (D) $3 \ln x$
 - (E) $e^{3/x}$

- 9. The improper integral $\int_1^\infty \frac{\sin^2 x}{x^{3/2}} dx$
 - (A) converges, by comparison with the integral $\int_{1}^{\infty} \frac{1}{x^{3/2}} dx$
 - (B) diverges, by comparison with the integral $\int_{1}^{\infty} \frac{1}{x^{3/2}} dx$
 - (C) diverges, by comparison with the integral $\int_{1}^{\infty} \sin^{2} x \, dx$
 - (D) converges to the value 0
 - (E) converges to the value $-\pi$

- 10. Suppose that y(t) is the solution to the initial value problem $\frac{dy}{dt} = y^2$, $y(0) = \frac{1}{2}$. What is y(5)?
 - (A) $-\frac{1}{3}$
 - (B) $-\frac{1}{5}$
 - (C) $\frac{1}{7}$
 - (D) $\frac{1}{2}e^5$
 - (E) $\frac{1}{2}e^{5/2}$

Name (print):	Section:	Page 7 Form B 152–01a	a-9

Part II: Write Out (10 points each)

Show all your work. Appropriate partial credit will be given. You may not use a calculator.

11. The curve $y=\sqrt{x}$, between x=0 and x=4, is rotated about the x-axis. Find the surface area of the resulting surface.

12. A tank has volume 1000 liters and initially contains pure fresh water. Water containing 10 grams of salt per liter runs into the tank at a rate of 20 L/min. The salt water mixes instantly and completely with the fresh water, and the mixture drains out the bottom at a rate of 20 L/min. Find a formula for S(t), the number of grams of salt in the tank after t minutes.

Name (print): _______ Section: _____ Page 8 Form B 152-01a-2

- 13. In this problem we shall use the trapezoid rule with n=4 to approximate $\int_1^3 \sqrt{x} \, dx$. The three parts of the problem can be done in any order. Note: At no time should you be using the antiderivative of the function \sqrt{x} .
 - (a) Write out the trapezoid-rule approximation T_4 to $\int_1^3 \sqrt{x} \, dx$. DO NOT SIMPLIFY; the purpose of this question is to show that you understand the formula, not that you can do arithmetic.

(b) Sketch the graph of $f(x) = \sqrt{x}$, $1 \le x \le 3$, along with the approximating trapezoids.

(c) Using the error-bound formula

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 where $|f''(x)| \le K$ for $a \le x \le b$,

find an upper bound for the error in using T_4 to approximate $\int_1^3 \sqrt{x} \, dx$.

Name (print): _______ Section: ______ Page 9 Form B 152–01a–2

14. Evaluate $\int \frac{3x^2 - x + 8}{x^3 + 4x} \, dx$.

15. A plate of uniform density occupies the region bounded by $y=1+x^3$, y=0, x=0, and x=2. Find \overline{x} , the x component of the centroid (center of mass) of the plate.