Name (Print)______ ID_____ Last. First Middle Name (Sign)______ Sec_____

MATH 152 FINAL EXAM Spring 2005 Sections 513,514 Version B1 P. Yasskin

1-12	/60
13	/12
14	/12
15	/12
16	/12

Multiple Choice: (5 points each)

- **1.** Find the area between the curves $y = x^2$ and y = 2x + 3.

 - **c.** $\frac{16}{3}$ **d.** $\frac{32}{3}$

 - **e.** $\frac{88}{3}$
- **2.** The base of a solid is the circle $x^2 + y^2 = 9$ and the cross sections perpendicular to the x-axis are squares. Find the volume of the solid.
 - **a.** 9
 - **b.** 18
 - **c.** 36
 - **d.** 72
 - **e.** 144
- $\int \frac{dx}{x^2 \sqrt{16 + x^2}}$ becomes 3. Using a trigonometric substitution, the integral

a.
$$\int \frac{\cos^3 \theta}{16 \sin^2 \theta} d\theta$$

b.
$$\int \frac{\cos^3 \theta}{64 \sin^2 \theta} d\theta$$

$$\mathbf{c.} \int \frac{\cos \theta}{16 \sin^2 \theta} \, d\theta$$

$$\mathbf{d.} \int \frac{1}{64\sin^2\!\theta\cos\theta} \, d\theta$$

e.
$$\int \frac{1}{16\sin^2\theta\cos\theta} d\theta$$

- **4.** Compute $\int \frac{2}{x(x-2)} dx.$
 - **a.** $\ln|x-2| \ln|x| + C$
 - **b.** $\ln|x| \ln|x 2| + C$
 - **c.** $\ln|x| + 2\ln|x 2| + C$
 - **d.** $\ln|x| 2\ln|x 2| + C$
 - **e.** $2 \ln|x-2| \ln|x| + C$

- **5.** Use the Middle Sum Rule with n = 4 intervals to approximate the integral $\int_{1}^{9} (9 + x^2) dx$.
 - **a.** 240
 - **b.** 312
 - **c.** $314\frac{1}{3}$
 - **d.** 320
 - **e.** 400
- **6.** Solve the differential equation $\frac{dy}{dx} = \frac{4}{3} \frac{x^3}{y^2}$ with the initial condition y(0) = 2.

a.
$$y = 2x^{4/3}$$

b.
$$y = x^{3/4} + 2$$

c.
$$y = x^{4/3} + 2$$

d.
$$y = \sqrt[4]{x^3 + 8}$$

e.
$$v = \sqrt[3]{x^4 + 8}$$

- 7. A sequence $\{a_n\}$ is defined by $a_1=4$ and $a_{n+1}=\sqrt{5a_n^2-16}$. Find $\lim_{n\to\infty}a_n$.
 - **a.** -2
 - **b.** 2
 - **c.** $\sqrt{5}$
 - **d.** 4
 - e. Divergent

- **8.** Compute $\sum_{n=1}^{\infty} \frac{2^{3n+1}}{3^{2n+1}}$

 - **a.** $\frac{2}{3}$ **b.** $\frac{8}{9}$ **c.** $\frac{16}{3}$
 - **d.** $\frac{16}{9}$
 - e. Divergent

9. Compute $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(2n)!}$

HINT: Think about the standard Maclaurin series.

- **a.** -1
- **b.** 1
- c. 2π
- **d.** e^{π}
- e. Divergent

- **10.** A triangle has vertices $A = (2 + \sqrt{2}, 3, 3)$, B = (2, -1, -1) and C = (2, 2, 2). Find the angle at vertex C.

 - b. $\frac{\pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{3\pi}{4}$
 - **e.** $\frac{2\pi}{3}$

- 11. If \vec{u} points Up and \vec{v} points North-West, which way does $\vec{u} \times \vec{v}$ point?
 - a. South-West
 - **b.** South-East
 - c. North-East
 - **d.** 45° Up from North-West
 - e. 45° Down from North-West
- **12.** Find the area of a parallelogram with edges $\vec{a} = (-2, 4, -1)$ and $\vec{b} = (3, 0, 2)$.
 - **a.** 8
 - **b.** $\sqrt{209}$
 - **c.** 209
 - **d.** $2\sqrt{2}$
 - **e.** $\frac{1}{2}\sqrt{209}$

13. (12 points) A water tank has the shape of a hemisphere with radius 5 m. It is filled with water to a height of 3 m. Find the work in Joules required to empty the tank by pumping all of the water to the top of the tank. Give your answer in terms of ρ (the density of water) and g (the acceleration of gravity).

14. (12 points) Compute
$$\int_0^{\pi/4} \sec^3\theta \tan^3\theta \, d\theta.$$

15. (12 points) The curve $y = \frac{x^2}{4} - \frac{\ln x}{2}$ between x = 1 and x = 2 is rotated about the *y*-axis. Find the area of the resulting surface.

16. (12 points) Find the Maclaurin series (using \sum notation) for $f(x) = \frac{2x}{(1-2x)^2}$ by manipulating the derivative of the series for $g(x) = \frac{1}{1-2x}$. What is the interval of convergence for f(x) (including endpoints)? Justify your answers.