Sections 513,514

Version B Solutions

P. Yasskin

Multiple Choice: (5 points each)

- **1.** Find the area between the curves $y = x^2$ and y = 2x + 3.
 - **a.** $\frac{4}{3}$
 - **b.** $\frac{8}{3}$
 - **c**. $\frac{16}{3}$
 - d. $\frac{32}{3}$ CORRECT
 - **e.** $\frac{88}{3}$

We find where the curves intersect:

$$x^{2} = 2x + 3 x^{2} - 2x - 3 = 0 (x + 1)(x - 3) = 0 x = -1,3$$

$$A = \int_{-1}^{3} (2x + 3 - x^{2}) dx = \left[x^{2} + 3x - \frac{x^{3}}{3} \right]_{-1}^{3} = (9 + 9 - 9) - \left(1 - 3 + \frac{1}{3} \right) = \frac{32}{3}$$

- **2.** The base of a solid is the circle $x^2 + y^2 = 9$ and the cross sections perpendicular to the *x*-axis are squares. Find the volume of the solid.
 - **a.** 9
 - **b.** 18
 - **c.** 36
 - **d.** 72
 - e. 144 CORRECT

x integral The side of a square is s = 2y. So the area of a square

is
$$A(x) = 4y^2 = 4(9 - x^2)$$

$$V = \int_{-3}^{3} A(x) dx = \int_{-3}^{3} 4(9 - x^{2}) dx = 4 \left[9x - \frac{x^{3}}{3} \right]_{-3}^{3} = 8(27 - 9) = 144$$

- 3. Using a trigonometric substitution, the integral $\int \frac{dx}{x^2 \sqrt{16 + x^2}}$ becomes
 - **a.** $\int \frac{\cos^3 \theta}{16 \sin^2 \theta} d\theta$
 - **b.** $\int \frac{\cos^3 \theta}{64 \sin^2 \theta} d\theta$
 - c. $\int \frac{\cos \theta}{16 \sin^2 \theta} d\theta$ CORRECT
 - **d.** $\int \frac{1}{64 \sin^2 \theta \cos \theta} d\theta$
 - **e.** $\int \frac{1}{16\sin^2\theta\cos\theta} \, d\theta$

$$x = 4 \tan \theta$$
 $dx = 4 \sec^2 \theta d\theta$

$$I = \int \frac{4\sec^2\theta \, d\theta}{16\tan^2\theta \sqrt{16 + 16\tan^2\theta}} = \int \frac{\sec\theta \, d\theta}{16\tan^2\theta} = \int \frac{\cos\theta \, d\theta}{16\sin^2\theta}$$

4. Compute
$$\int \frac{2}{x(x-2)} dx.$$

a.
$$\ln|x-2| - \ln|x| + C$$
 CORRECT

b.
$$\ln|x| - \ln|x - 2| + C$$

c.
$$\ln|x| + 2\ln|x - 2| + C$$

d.
$$\ln|x| - 2\ln|x - 2| + C$$

e.
$$2 \ln|x-2| - \ln|x| + C$$

Partial Fractions:
$$\frac{2}{x(x-2)} = \frac{A}{x} + \frac{B}{x-2}$$
 Clear denominator: $2 = A(x-2) + Bx$

$$x = 0$$
: $2 = A(-2)$ $A = -1$ $x = 2$: $2 = B(2)$ $B = 1$

$$\int \frac{2}{x(x-2)} dx = \int \frac{-1}{x} + \frac{1}{x-2} dx = \ln|x-2| - \ln|x| + C$$

5. Use the Middle Sum Rule with
$$n = 4$$
 intervals to approximate the integral $\int_{1}^{9} (9 + x^2) dx$.

c.
$$314\frac{1}{3}$$

$$\Delta x = \frac{9-1}{4} = 2$$

$$M_4 = \Delta x(f(2) + f(4) + f(6) + f(8)) = 2(13 + 25 + 45 + 73) = 312$$

6. Solve the differential equation
$$\frac{dy}{dx} = \frac{4}{3} \frac{x^3}{y^2}$$
 with the initial condition $y(0) = 2$.

a.
$$y = 2x^{4/3}$$

b.
$$y = x^{3/4} + 2$$

c.
$$v = x^{4/3} + 2$$

d.
$$y = \sqrt[4]{x^3 + 8}$$

e.
$$y = \sqrt[3]{x^4 + 8}$$
 CORRECT

Separate:
$$\int 3y^2 dy = \int 4x^3 dx$$
 Integrate: $y^3 = x^4 + C$

Use the initial condition:
$$2^3 = 0^4 + C$$
 $C = 8$

Substitute back:
$$y^3 = x^4 + 8$$
 Solve: $y = \sqrt[3]{x^4 + 8}$

7. A sequence $\{a_n\}$ is defined by $a_1 = 4$ and $a_{n+1} = \sqrt{5a_n^2 - 16}$. Find $\lim_{n \to \infty} a_n$.

- **a.** -2
- **b.** 2
- c. $\sqrt{5}$
- **d.** 4

e. Divergent CORRECT

If the limit exists,

then $L = \lim_{n \to \infty} a_n$ satisfies $L = \sqrt{5L^2 - 16}$, or $L^2 = 5L^2 - 16$, or $4L^2 = 16$ or $L = \pm 2$.

To find out which one or neither, we try some terms:

$$a_1 = 4$$
, $a_2 = \sqrt{5 \cdot 16 - 16} = 8$, $a_3 = \sqrt{5 \cdot 64 - 16} = \sqrt{304}$

The terms are increasing because

if $a_{n+1} > a_n$, then $5a_{n+1}^2 - 16 > 5a_n^2 - 16$ and $a_{n+2} > a_{n+1}$.

So $\lim_{n\to\infty} a_n$ diverges to ∞ .

8. Compute $\sum_{n=1}^{\infty} \frac{2^{3n+1}}{3^{2n+1}}$

- **a.** $\frac{2}{3}$
- **b.** $\frac{8}{9}$
- c. $\frac{16}{3}$ CORRECT
- **d.** $\frac{16}{9}$
- e. Divergent

Geometric series: Ratio: $r = \frac{2^3}{3^2} = \frac{8}{9} < 1$ First term: $a = \frac{2^4}{3^3} = \frac{16}{27}$

$$\sum_{n=1}^{\infty} \frac{2^{3n+1}}{3^{2n+1}} = \frac{\frac{16}{27}}{1 - \frac{8}{9}} = \frac{16}{27} \cdot 9 = \frac{16}{3}$$

9. Compute $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(2n)!}$

HINT: Think about the standard Maclaurin series.

- a. -1 CORRECT
- **b**. 1
- c. 2π
- **d.** e^{π}
- e. Divergent

Since $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$, we conclude $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(2n)!} = \cos \pi = -1$

10. A triangle has vertices
$$A = (2 + \sqrt{2}, 3, 3)$$
, $B = (2, -1, -1)$ and $C = (2, 2, 2)$. Find the angle at vertex C .

a.
$$\frac{\pi}{4}$$

b.
$$\frac{\pi}{3}$$

c.
$$\frac{\pi}{2}$$

b.
$$\frac{\pi}{3}$$
c. $\frac{\pi}{2}$
d. $\frac{3\pi}{4}$ CORRECT

e.
$$\frac{2\pi}{3}$$

$$\overrightarrow{CA} = A - C = (\sqrt{2}, 1, 1) \qquad \overrightarrow{CB} = B - C = (0, -3, -3) \qquad \overrightarrow{CA} \cdot \overrightarrow{CB} = -6$$

$$|\overrightarrow{CA}| = \sqrt{2 + 1 + 1} = 2 \qquad |\overrightarrow{CB}| = \sqrt{9 + 9} = 3\sqrt{2}$$

$$\cos \theta = \frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}| |\overrightarrow{CB}|} = \frac{-6}{2 \cdot 3\sqrt{2}} = \frac{-1}{\sqrt{2}} \implies \theta = 135^{\circ} = \frac{3\pi}{4}$$

11. If
$$\vec{u}$$
 points Up and \vec{v} points North-West, which way does $\vec{u} \times \vec{v}$ point?

- a. South-West **CORRECT**
- b. South-East
- c. North-East
- d. 45° Up from North-West
- e. 45° Down from North-West

Hold your right fingers Up with the palm facing North-West. Then your thumb points South-West.

12. Find the area of a parallelogram with edges
$$\vec{a} = (-2, 4, -1)$$
 and $\vec{b} = (3, 0, 2)$.

b.
$$\sqrt{209}$$
 CORRECT

d.
$$2\sqrt{2}$$

e.
$$\frac{1}{2}\sqrt{209}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -2 & 4 & -1 \\ 3 & 0 & 2 \end{vmatrix} = \vec{i}(8) - \vec{j}(-4+3) + \vec{k}(0-12) = (8,1,-12)$$

$$A = |\vec{a} \times \vec{b}| = \sqrt{64 + 1 + 144} = \sqrt{209}$$

13. (12 points) A water tank has the shape of a hemisphere with radius 5 m. It is filled with water to a height of 3 m. Find the work in Joules required to empty the tank by pumping all of the water to the top of the tank. Give your answer in terms of ρ (the density of water) and g (the acceleration of gravity).

Set y = 0 at the top of the tank and measure y downward.

The slice y below the top has volume $dV = \pi r^2 dy = \pi (25 - y^2) dy$.

There is water from y = 2 to y = 5 below the top. So the work is

$$W = \int_{2}^{5} \rho gy \pi (25 - y^{2}) dy = \rho g \pi \int_{2}^{5} (25y - y^{3}) dy = \rho g \pi \left[\frac{25y^{2}}{2} - \frac{y^{4}}{4} \right]_{2}^{5}$$
$$= \rho g \pi \left(\frac{625}{2} - \frac{625}{4} \right) - \rho g \pi \left(\frac{25 \cdot 4}{2} - \frac{16}{4} \right) = \frac{441}{4} \rho g \pi$$

14. (12 points) Compute
$$\int_0^{\pi/4} \sec^3\theta \tan^3\theta \, d\theta.$$

$$u = \sec \theta$$
 $du = \sec \theta \tan \theta d\theta$ $\tan^2 \theta = \sec^2 \theta - 1 = u^2 - 1$

$$\int_0^{\pi/4} \sec^3\theta \tan^3\theta \, d\theta = \int_0^{\pi/4} \sec^2\theta \tan^2\theta \sec\theta \tan\theta \, d\theta = \int_1^{\sqrt{2}} u^2(u^2 - 1) \, du$$
$$= \left[\frac{u^5}{5} - \frac{u^3}{3} \right]_1^{\sqrt{2}} = \left(\frac{4\sqrt{2}}{5} - \frac{2\sqrt{2}}{3} \right) - \left(\frac{1}{5} - \frac{1}{3} \right) = \frac{2\sqrt{2}}{15} + \frac{2}{15}$$

15. (12 points) The curve $y = \frac{x^2}{4} - \frac{\ln x}{2}$ between x = 1 and x = 2 is rotated about the *y*-axis. Find the area of the resulting surface.

$$1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{x}{2} - \frac{1}{2x}\right)^2 = 1 + \frac{1}{4}x^2 - \frac{1}{2} + \frac{1}{4x^2} = \frac{1}{4}x^2 + \frac{1}{2} + \frac{1}{4x^2} = \left(\frac{x}{2} + \frac{1}{2x}\right)^2$$

$$A = \int_{1}^{2} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = 2\pi \int_{1}^{2} x \left(\frac{x}{2} + \frac{1}{2x}\right) dx = \pi \int_{1}^{2} (x^2 + 1) dx = \pi \left[\frac{x^3}{3} + x\right]_{1}^{2}$$

$$= \pi \left(\frac{8}{3} + 2\right) - \pi \left(\frac{1}{3} + 1\right) = \pi \left(\frac{7}{3} + 1\right) = \frac{10}{3}\pi$$

16. (12 points) Find the Maclaurin series (using \sum notation) for $f(x) = \frac{2x}{(1-2x)^2}$ by manipulating the derivative of the series for $g(x) = \frac{1}{1-2x}$. What is the interval of convergence for f(x) (including endpoints)? Justify your answers.

$$g(x) = \frac{1}{1 - 2x} = \sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^n x^n$$
 which converges for $|2x| < 1$ or $|x| < \frac{1}{2}$.

Thus the center is x = 0 and the radius is $R = \frac{1}{2}$.

Then $g'(x) = \frac{2}{(1-2x)^2} = \sum_{n=0}^{\infty} 2^n n x^{n-1}$ which also has center is x=0 and radius is $R=\frac{1}{2}$, since the derivative of a power series has the same radius of convergence.

So
$$f(x) = \frac{2x}{(1-2x)^2} = xg'(x) = \sum_{n=0}^{\infty} 2^n nx^n$$
.

The interval of convergence is $\left(-\frac{1}{2},\frac{1}{2}\right)$ except we need to check the endpoints.

At
$$x = -\frac{1}{2}$$
: $f\left(-\frac{1}{2}\right) = \sum_{n=0}^{\infty} 2^n n \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} (-1)^{n-1} n$ which diverges by the n^{th} Term Divergence Test.

At $x = \frac{1}{2}$: $f(\frac{1}{2}) = \sum_{n=0}^{\infty} 2^n n (\frac{1}{2})^n = \sum_{n=0}^{\infty} n$ which diverges by the n^{th} Term Divergence Test.

So the interval of convergence is $\left(-\frac{1}{2}, \frac{1}{2}\right)$.