
			1	
Name	ID		1-8	/40
MATH 171	Exam 1	Spring 2004	9	/10
Sections 502		P. Yasskin	10	/10
On the front of the Blue Book, on the Scantron and on this sheet			11	/20
write your Name, your University ID and "Exam 1."			12	/10
On the front of the Blue Book copy the Grading Grid shown at the right.				
Enter your Multiple Choice answers on the Scantron			13	/10
and CIRCLE them on this sheet.			Total	/100

Multiple Choice: (5 points each. No part credit.)

- **1.** Compute: $\lim_{x \to 5} \frac{x-5}{x^2-25}$
 - **a.** $\frac{1}{10}$
 - **b.** $\frac{1}{5}$
 - **c.** 0
 - **d.** 5
 - e. Does Not Exist
- **2.** Compute: $\lim_{x \to 2} \frac{(x+1)^2 (x-1)^2 8}{x-2}$
 - **a.** 1
 - **b.** 2
 - **c.** 4
 - **d.** 8
 - e. Does Not Exist

3. Which of the following is the function whose graph is $\rightarrow \rightarrow \rightarrow$

a.
$$f(x) = (x-2)^3 - 1$$

b.
$$f(x) = (x-1)^3 + 2$$

c.
$$f(x) = (x+1)^3 + 2$$

d.
$$f(x) = (x+1)^3 - 2$$

e.
$$f(x) = (x+2)^3 + 1$$

4. A triangle has vertices A=(-3,13), B=(2,1) and C=(6,4). Find $\cos\theta$ where θ is the angle at vertex B.

a.
$$\frac{17}{\sqrt{13}\sqrt{178}}$$

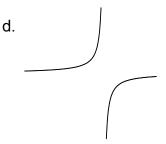
b.
$$\frac{16}{845}$$

c.
$$\frac{845}{16}$$


d.
$$\frac{16}{65}$$

e.
$$\frac{65}{16}$$

- **5.** A wagon is pulled along the ground by exerting a 4 Newton force along the handle which makes a 30° angle with the horizontal. How much work is done in pulling the wagon 5 meters?
 - a. 10 Joules
 - **b.** $10\sqrt{3}$ Joules
 - c. 5 Joules
 - **d.** $5\sqrt{3}$ Joules
 - e. $20\sqrt{3}$ Joules


- **6.** Find the parametric equations of the line through the points A = (-3, 13) and B = (2, 1).
 - **a.** x = -3 + 5t, y = 13 12t
 - **b.** x = 5 3t, y = -12 + 13t
 - **c.** x = -3 + 2t, y = 13 + t
 - **d.** x = 2 3t, y = 1 + 13t
 - **e.** x = 5 + 2t, y = -12 + t
- **7.** Which of the following parametric curves is the parabola $x = 2 + y^2$?
 - **a.** x = 2 t, $y = t^2$
 - **b.** $x = t^2$, y = 2 + t
 - **c.** x = 2 + t, $y = t^2$
 - **d.** x = t, $y = 2 + t^2$
 - **e.** $x = 2 + t^2$, y = t
- **8.** Near the point x = 3, the graph of the function $f(x) = \frac{x^2 5x + 6}{x^2 6x + 9}$ looks qualitatively like

C.

Work Out: (Points indicated. Part credit possible.)

Start each problem on a new page of the Blue Book. Number the problem. Show all work.

- **9.** (10 points) State the meaning of the equation $\lim_{x\to 5} (3x-4) = 11$ and then prove it. Be sure to distinguish between your Definition, your Scratch work and your Proof.
- **10.** (10 points) Find an interval of width 1 in which the equation $x^3 x = 1$ is guaranteed to have a solution. Be sure to name the theorem you use and explain why it applies.
- **11.** (20 points) A body is moving so that its position at time t is $x(t) = \sqrt{t+2}$.
 - **a.** What is the average velocity between t = 2 and t = 7?
 - **b.** What is the average velocity between t = 2 and t = 2 + h?
 - **c.** What is the instantaneous velocity at t = 2?
- **12.** (10 points) Compute the derivative of $f(x) = \frac{1}{x}$ from the limit definition of the derivative. HINTS: $\frac{a-b}{c} = \frac{1}{c}(a-b)$ Put everything over a common denominator.
- **13.** (10 points) Find the horizontal asymptotes as $x \to \infty$ and as $x \to -\infty$ of the function $f(x) = \frac{\sqrt{x^2 + 4x} \sqrt{x^2 + 2x}}{2}$. Be sure to state your two answers in concluding sentences, identifying which asymptote is which.