			1	
Name	ID		1-11	/55
MATH 171	Final Exam	Spring 2004	12	/10
Sections 502		P. Yasskin	13	/10
On the front of the Blue Book, on the Scantron and on this sheet			14	/10
write your Name, your University ID and "Final Exam." On the front of the Blue Book copy the Grading Grid shown at the right.			15	/10
Enter your Multiple Choice answers on the Scantron			16	/10
and CIRCLE them on this sheet.			Total	/105

Multiple Choice: (5 points each. No part credit.)

- **1.** For what value(s) of p are the vectors $\vec{a} = (3,p)$ and $\vec{b} = (4,6)$, perpendicular?
 - **a.** 2 or -2 only
 - **b.** 2 only
 - **c.** -2 only
 - **d.** $\frac{1}{2}$ only
 - **e.** $-\frac{1}{2}$ only
- **2.** For what value of b does $\lim_{x\to 2} f(x)$ exist if $f(x) = \begin{cases} x+3 & \text{if } x < 2 \\ 4 & \text{if } x = 2 \\ x^2+b & \text{if } x > 2 \end{cases}$
 - **a.** 1
 - **b.** 2
 - **c.** 3
 - **d.** 4
 - **e.** No values of *b*.

- 3. Compute $\lim_{x\to 3} \frac{x^2 4x + 3}{x^2 9}$
 - **a.** $\frac{1}{6}$
 - **b.** $\frac{1}{3}$
 - **c.** $\frac{1}{2}$
 - **d.** $\frac{2}{3}$
 - **e.** $\frac{5}{6}$
- **4.** Compute $\lim_{x\to 0} \frac{\sin x x}{x^3}$
 - **a.** $-\frac{1}{6}$
 - **b.** $-\frac{1}{3}$
 - **c.** 0
 - **d.** $\frac{1}{3}$
 - e. undefined
- **5.** As $x \to \infty$, the function $f(x) = \sqrt{x^2 + 5x} \sqrt{x^2 + 2x}$ has a horizontal asymptote at
 - **a.** $-\frac{3}{2}$
 - **b.** $-\frac{1}{2}$
 - **c.** 0
 - **d.** $\frac{1}{2}$
 - **e.** $\frac{3}{2}$

- **6.** If $f(x) = \ln(x^2 + x)$ then f'(2) =
 - **a.** $\frac{1}{6}$
 - **b.** $\frac{1}{3}$
 - **c.** $\frac{1}{2}$
 - **d.** $\frac{2}{3}$
 - **e.** $\frac{5}{6}$
- 7. If Pete is walking up a hill whose slope is 0.2 and his horizontal velocity is $\frac{dx}{dt} = 6$ mi/hr, what is his vertical velocity, $\frac{dy}{dt}$?
 - **a.** 30 mi/hr
 - **b.** 0.033 mi/hr
 - **c.** 0.833 mi/hr
 - **d.** 1.2 mi/hr
 - **e.** 6.2 mi/hr
- **8.** x=2 is a critical point of the function $f(x)=\frac{1}{4}x^4-2x^3+6x^2-8x$. By the Second Derivative Test, x=2 is
 - a. a local minimum.
 - b. a local maximum.
 - c. an inflection point.
 - d. The Second Derivative Test FAILS.

- **9.** If a rocket starts at x(0) = 0 m, with velocity v(0) = 1 m/sec, and accelerates at $a(t) = 4e^{-2t}$ m/sec², what is its position at t = 1 sec?
 - **a.** $2 16e^{-2}$
 - **b.** $2 + e^{-2}$
 - **c.** 3
 - **d.** $1 + e^{-2}$
 - **e.** $2 + 16e^{-2}$
- **10.** Compute $\int_{1/2}^{1} \frac{1}{\sqrt{1-x^2}} dx$
 - a. $\frac{\pi}{12}$
 - **b.** $\frac{\pi}{6}$
 - c. $\frac{\pi}{4}$
 - d. $\frac{\pi}{3}$
 - e. $\frac{\pi}{2}$
- **11.** Compute $\int_0^{\pi} e^{\cos x} \sin x \, dx$
 - **a.** 0
 - **b.** $\frac{1}{e} e$
 - **c.** $e \frac{1}{e}$
 - **d.** $-\frac{1}{e}$
 - **e.** -*e*

Work Out: (10 points each. Part credit possible.)

Start each problem on a new page of the Blue Book. Number the problem. Show all work.

- **12.** Find the equation of the line tangent to $y = x^2$ at the general point x = a. For what value(s) of a does the tangent line pass through the point (3,8)?
- **13.** The area of a rectangle is held constant at 36 cm^2 while the length and width are changing. If the length is currently 3 cm and is increasing at 2 cm/min, what is the width, is it increasing or decreasing and at what rate? Write your answer using sentences.
- **14.** Determine exactly how many real solutions there are to the equation $x^{12} + x^4 + x^2 2 = 0$. Use sentences and name any theorems you use.

Hint: Factor an x out of the derivative.

15. Find the dimensions and area of the largest rectangle that can be inscribed in the ellipse $4x^2 + 9y^2 = 36$.

16. Use the Method of Riemann Sums with Right Endpoints to compute the integral $\int_{2}^{7} 8(x-2)^{3} dx$.

Use the F.T.C. only to check your answer.

Hints:
$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$