1-11 /55 ID_____ Name_ 12 /10 **MATH 171** Final Exam Spring 2004 Sections 502 Solutions P. Yasskin 13 /10 On the front of the Blue Book, on the Scantron and on this sheet 14 /10 write your Name, your University ID and "Final Exam." 15 /10 On the front of the Blue Book copy the Grading Grid shown at the right. 16 /10 Enter your Multiple Choice answers on the Scantron and CIRCLE them on this sheet. Total /105

Multiple Choice: (5 points each. No part credit.)

- **1.** For what value(s) of p are the vectors $\vec{a} = (3,p)$ and $\vec{b} = (4,6)$, perpendicular?
 - **a.** 2 or -2 only
 - **b.** 2 only
 - **c.** -2 only correctchoice
 - **d.** $\frac{1}{2}$ only
 - **e.** $-\frac{1}{2}$ only

 \vec{a} and \vec{b} are perpendicular iff $\vec{a} \cdot \vec{b} = 0$. In this case, $\vec{a} \cdot \vec{b} = 12 + 6p = 0$. So p = -2.

- 2. For what value of b does $\lim_{x\to 2} f(x)$ exist if $f(x) = \begin{cases} x+3 & \text{if } x < 2 \\ 4 & \text{if } x = 2 \\ x^2+b & \text{if } x > 2 \end{cases}$
 - **a.** 1 correctchoice
 - **b.** 2
 - **c.** 3
 - **d.** 4
 - **e.** No values of *b*.

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x+3) = 5 \qquad \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} + b) = 4 + b$$

So $\lim_{x\to 2} f(x)$ exist iff 4+b=5, i.e. b=1.

3. Compute
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{x^2 - 9}$$

a.
$$\frac{1}{6}$$

b.
$$\frac{1}{3}$$
 correctchoice

c.
$$\frac{1}{2}$$

d.
$$\frac{2}{3}$$

e.
$$\frac{5}{6}$$
 $\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 3)(x - 1)}{(x - 3)(x + 3)} = \lim_{x \to 3} \frac{(x - 1)}{(x + 3)} = \frac{2}{6} = \frac{1}{3}$

4. Compute
$$\lim_{x\to 0} \frac{\sin x - x}{x^3}$$

a.
$$-\frac{1}{6}$$
 correctchoice

b.
$$-\frac{1}{3}$$

d.
$$\frac{1}{3}$$

e. undefined
$$\lim_{x \to 0} \frac{\sin x - x}{x^3} \stackrel{l'H}{=} \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \stackrel{l'H}{=} \lim_{x \to 0} \frac{-\sin x}{6x} = \frac{-1}{6}$$

5. As $x \to \infty$, the function $f(x) = \sqrt{x^2 + 5x} - \sqrt{x^2 + 2x}$ has a horizontal asymptote at

a.
$$-\frac{3}{2}$$

b.
$$-\frac{1}{2}$$

d.
$$\frac{1}{2}$$

e.
$$\frac{3}{2}$$
 correctchoice

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 5x} - \sqrt{x^2 + 2x} \right) = \lim_{x \to \infty} \left(\sqrt{x^2 + 5x} - \sqrt{x^2 + 2x} \right) \cdot \frac{\sqrt{x^2 + 5x} + \sqrt{x^2 + 2x}}{\sqrt{x^2 + 5x} + \sqrt{x^2 + 2x}}$$

$$= \lim_{x \to \infty} \frac{(x^2 + 5x) - (x^2 + 2x)}{\sqrt{x^2 + 5x} + \sqrt{x^2 + 2x}} = \lim_{x \to \infty} \frac{3x}{\sqrt{x^2 + 5x} + \sqrt{x^2 + 2x}} \cdot \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{3}{\sqrt{1 + \frac{5}{x}} + \sqrt{1 + \frac{2}{x}}} = \frac{3}{2}$$

- **6.** If $f(x) = \ln(x^2 + x)$ then f'(2) =
 - **a.** $\frac{1}{6}$
 - **b.** $\frac{1}{3}$
 - **c.** $\frac{1}{2}$
 - **d.** $\frac{2}{3}$
 - e. $\frac{5}{6}$ correctchoice

$$f'(x) = \frac{2x+1}{x^2+x}$$
 $f'(2) = \frac{5}{6}$

- 7. If Pete is walking up a hill whose slope is 0.2 and his horizontal velocity is $\frac{dx}{dt} = 6$ mi/hr, what is his vertical velocity, $\frac{dy}{dt}$?
 - **a.** 30 mi/hr
 - **b.** $0.03\bar{3}$ mi/hr
 - **c.** $0.83\bar{3}$ mi/hr
 - **d.** 1.2 mi/hr correctchoice
 - **e.** 6.2 mi/hr

By chain rule, $\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt} = 0.2 \cdot 6 = 1.2 \text{ mi/hr.}$

- **8.** x=2 is a critical point of the function $f(x)=\frac{1}{4}x^4-2x^3+6x^2-8x$. By the Second Derivative Test, x=2 is
 - a. a local minimum.
 - **b.** a local maximum.
 - c. an inflection point.
 - d. The Second Derivative Test FAILS. correctchoice

$$f'(x) = x^3 - 6x^2 + 12x - 8$$
 $f''(x) = 3x^2 - 12x + 12$ $f''(2) = 12 - 24 + 12 = 0$ Test Fails.

9. If a rocket starts at
$$x(0) = 0$$
 m, with velocity $v(0) = 1$ m/sec, and accelerates at $a(t) = 4e^{-2t}$ m/sec², what is its position at $t = 1$ sec?

a.
$$2 - 16e^{-2}$$

b.
$$2 + e^{-2}$$
 correctchoice

d.
$$1 + e^{-2}$$

e.
$$2 + 16e^{-2}$$

$$v(t) = -2e^{-2t} + C$$
 $v(0) = -2 + C = 1$ $C = 3$ $v(t) = -2e^{-2t} + 3$
 $x(t) = e^{-2t} + 3t + D$ $x(0) = 1 + D = 0$ $D = -1$ $x(t) = e^{-2t} + 3t - 1$ $x(1) = e^{-2} + 3 - 1 = 2 + e^{-2}$

10. Compute
$$\int_{1/2}^{1} \frac{1}{\sqrt{1-x^2}} dx$$

a.
$$\frac{\pi}{12}$$

b.
$$\frac{\pi}{6}$$

c.
$$\frac{\pi}{4}$$

d.
$$\frac{\pi}{3}$$
 correctchoice

e.
$$\frac{\pi}{2}$$

$$\int_{1/2}^{1} \frac{1}{\sqrt{1-x^2}} dx = \left[\arcsin x\right]_{1/2}^{1} = \arcsin 1 - \arcsin \frac{1}{2} = \frac{\pi}{2} - \frac{\pi}{6} = \frac{\pi}{3}$$

11. Compute
$$\int_0^\pi e^{\cos x} \sin x \, dx$$

b.
$$\frac{1}{e} - e$$

c.
$$e - \frac{1}{e}$$
 correctchoice

d.
$$-\frac{1}{e}$$

$$u = \cos x \qquad du = -\sin x \, dx$$
$$\int_0^{\pi} e^{\cos x} \sin x \, dx = -\int e^u \, du = -e^u = \left[-e^{\cos x} \right]_0^{\pi} = -e^{-1} + e^1 = e - \frac{1}{e}$$

Work Out: (10 points each. Part credit possible.)

Start each problem on a new page of the Blue Book. Number the problem. Show all work.

12. Find the equation of the line tangent to $y = x^2$ at the general point x = a. For what value(s) of a does the tangent line pass through the point (3,8)?

$$f(x) = x^2$$
 $f(a) = a^2$ $f'(x) = 2x$ $f'(a) = 2a$
 $y = f_{tan}(x) = f(a) + f'(a)(x - a) = a^2 + 2a(x - a) = 2ax - a^2$
(3,8) lies on the tangent line if $8 = 2a3 - a^2$, or $a^2 - 6a + 8 = 0$, or $(a - 2)(a - 4) = 0$
So $a = 2$ or $a = 4$.

13. The area of a rectangle is held constant at 36 cm^2 while the length and width are changing. If the length is currently 3 cm and is increasing at 2 cm/min, what is the width, is it increasing or decreasing and at what rate? Write your answer using sentences.

Let l be the length and w be the width of the rectangle.

Then the area is held constant at A = lw = 36. Solving for the width we find $w = \frac{36}{l}$.

Differentiating and using the chain rule, we find $\frac{dw}{dt} = -\frac{36}{l^2} \frac{dl}{dt}$.

Currently, l=3 and $\frac{dl}{dt}=2$. So currently the width is $w=\frac{36}{3}=12$ cm,

and it is changing at $\frac{dw}{dt} = -\frac{36}{3^2}2 = -8$ cm/min. So it is decreasing at 8 cm/min.

14. Determine exactly how many real solutions there are to the equation $x^{12} + x^4 + x^2 - 2 = 0$. Use sentences and name any theorems you use.

Hint: Factor an x out of the derivative.

Let
$$f(x) = x^{12} + x^4 + x^2 - 2$$
. Then $f'(x) = 12x^{11} + 4x^3 + 2x = x(12x^{10} + 4x^2 + 2)$.

The quantity in parentheses is always positive.

So for x > 0 we have f'(x) > 0 and for x < 0 we have f'(x) < 0.

By the Mean Value Theorem, f(x) is increasing for x > 0 and decreasing for x < 0.

So there can be at most one solution for x > 0 and at most one solution for x < 0.

We test some values:

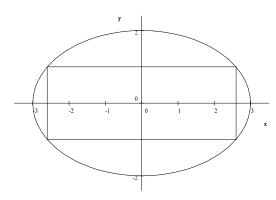
$$f(-1) = 1 + 1 + 1 - 2 = 1$$
 $f(0) = -2$ $f(1) = 1 + 1 + 1 - 2 = 1$

Since -2 < 0 < 1, by the Intermediate Value Theorem,

there is at least one solution of f(x) = 0 on [-1,0] and at least one solution on [0,1].

Therefore, there are exactly 2 solutions.

15. Find the dimensions and area of the largest rectangle that can be inscribed in the ellipse $4x^2 + 9y^2 = 36$.



Maximize A = 4xy subject to the constraint $4x^2 + 9y^2 = 36$.

Solve the constraint for $y = \frac{1}{3}\sqrt{36-4x^2}$ and substitute into the area:

Maximize
$$A = \frac{4}{3}x\sqrt{36-4x^2}$$

$$A' = \frac{4}{3}\sqrt{36 - 4x^2} + \frac{4}{3}x\frac{-4x}{\sqrt{36 - 4x^2}} = 0 \implies \sqrt{36 - 4x^2} = \frac{4x^2}{\sqrt{36 - 4x^2}}$$

$$\Rightarrow 36 - 4x^2 = 4x^2 \implies 36 = 8x^2 \implies x^2 = \frac{36}{8} = \frac{9}{2} \implies x = \frac{3}{\sqrt{2}}$$

$$y = \frac{1}{3}\sqrt{36 - 4x^2} = \frac{1}{3}\sqrt{36 - 4 \cdot \frac{9}{2}} = \frac{1}{3}\sqrt{18} = \sqrt{2}$$

The dimensions are $2x = \frac{6}{\sqrt{2}} = 3\sqrt{2}$ and $2y = 2\sqrt{2}$ and the area is

$$A = 4xy = 4\frac{3}{\sqrt{2}}\sqrt{2} = 12.$$

16. Use the Method of Riemann Sums with Right Endpoints to compute the integral $\int_{2}^{7} 8(x-2)^{3} dx$.

Use the F.T.C. only to check your answer.

Hints:
$$\sum_{i=1}^{n} 1 = n \qquad \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\Delta x = \frac{7-2}{n} = \frac{5}{n}$$
 $x_i = 2 + i\Delta x = 2 + \frac{5i}{n}$ $f(x) = 8(x-2)^3$ $f(x_i) = 8\left(2 + \frac{5i}{n} - 2\right)^3 = \frac{1000i^3}{n^3}$

$$\int_{2}^{7} 8(x-2)^{3} dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{1000i^{3}}{n^{3}} \frac{5}{n} = \lim_{n \to \infty} \frac{5000}{n^{4}} \sum_{i=1}^{n} i^{3} = \lim_{n \to \infty} \frac{5000}{n^{4}} \left(\frac{n(n+1)}{2}\right)^{2}$$
$$= \lim_{n \to \infty} 5000 \left(\frac{n(n+1)}{2n^{2}}\right)^{2} = \lim_{n \to \infty} 5000 \left(\frac{(n+1)}{2n}\right)^{2} = \lim_{n \to \infty} 5000 \left(\frac{1}{2} + \frac{1}{2n}\right)^{2} = \frac{5000}{4} = 1250$$

Check:
$$\int_{2}^{7} 8(x-2)^{3} dx = \left[2(x-2)^{4}\right]_{2}^{7} = 2(5)^{4} = 1250.$$