Name_

ID

Section

MATH 171 Sections 501

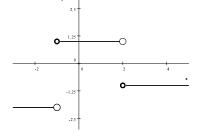
EXAM 1

Spring 1998

P. Yasskin

Multiple Choice (4 points each)

1. Write the statement as inequalities: p is not between 2 and 4.


a.
$$2 < p$$
 or $p < 4$

b.
$$2 > p \text{ or } p > 4$$

c.
$$2$$

d.
$$2 > p \text{ and } p > 4$$

- e. None of these
- 2. Give the formula for the function whose graph is

$$\mathbf{a.} \ f(x) = \begin{cases} -2 & \text{if} \quad x < -1 \\ 1 & \text{if} \quad -1 \le x < 2 \\ -1 & \text{if} \quad 2 \le x \end{cases}$$

$$\mathbf{b.} \ f(x) = \begin{cases} -1 & \text{if} \quad x \le -1 \\ 1 & \text{if} \quad -1 < x \le 2 \\ -2 & \text{if} \quad 2 < x \end{cases}$$

$$\mathbf{c.} \ f(x) = \begin{cases} -2 & \text{if} \quad x < -1 \\ 1 & \text{if} \quad -1 \le x \le 2 \\ -1 & \text{if} \quad 2 < x \end{cases}$$

b.
$$f(x) = \begin{cases} -1 & \text{if } x \le -1 \\ 1 & \text{if } -1 < x \le 2 \\ -2 & \text{if } 2 < x \end{cases}$$

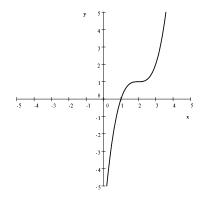
$$\mathbf{c.} \ f(x) = \begin{cases} -2 & \text{if } x < -1 \\ 1 & \text{if } -1 \le x \le 2 \\ -1 & \text{if } 2 < x \end{cases}$$

 $\mathbf{d.} f(x) = \begin{cases} -1 & \text{if } x < -1 \\ 1 & \text{if } -1 \le x \le 2 \\ -2 & \text{if } 2 < x \end{cases}$ $\mathbf{e.} f(x) = \begin{cases} -2 & \text{if } x \le -1 \\ 1 & \text{if } -1 < x < 2 \\ -1 & \text{if } 2 \le x \end{cases}$

e.
$$f(x) = \begin{cases} -2 & \text{if } x \le -1 \\ 1 & \text{if } -1 < x < 2 \\ -1 & \text{if } 2 \le x \end{cases}$$

3. Use Pascal's triangle or the binomial formula to expand $(x-2)^3$.

a.
$$x^3 + 2x^2 + 4x + 8$$


b.
$$x^3 - 2x^2 + 4x - 8$$

c.
$$x^3 + 3x^2 + 3x - 8$$

d.
$$x^3 + 6x^2 + 12x + 8$$

e.
$$x^3 - 6x^2 + 12x - 8$$

4. The graph at the right is the graph of which function?

a.
$$(x-1)^3+2$$

b.
$$(x-1)^3-2$$

c.
$$(x+1)^3+2$$

d.
$$(x-2)^3+1$$

e.
$$(x+2)^3+1$$

5. Find the angle between the vectors $\vec{u} = (-3, 3, 0)$ and $\vec{v} = (-2, 1, 1)$.

6. If $\overrightarrow{a} = \langle 2, -1, 3 \rangle$ and $\overrightarrow{b} = \langle 2, 4, 1 \rangle$, then $3\overrightarrow{a} - 2\overrightarrow{b} = \langle 3, 4, 1 \rangle$

a.
$$\langle 10, -5, 11 \rangle$$

b.
$$\langle 10, 5, 11 \rangle$$

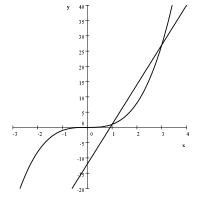
c.
$$\langle 2, -11, 7 \rangle$$

d.
$$\langle 2, 11, 7 \rangle$$

e.
$$(0, -5, 2)$$

7. If $\vec{a} = \langle 2, -1, 3 \rangle$ and $\vec{b} = \langle 2, 4, 1 \rangle$, then $\vec{a} \cdot \vec{b} = \langle 2, 4, 1 \rangle$

a.
$$(4, -4, 3)$$

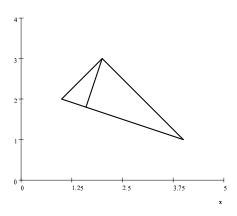

b.
$$(4,4,3)$$

8. Compute the limit $\lim_{x \to 3} \frac{x^2 - 2x - 3}{x^2 - 4x + 3}$

9. Suppose the function f(x) is discontinuous at x = 1, 3, 7 only.

Where is the function g(x) = f(x-2) discontinuous?

- **a.** 1, 3, 7
- **b.** 2, 6, 14
- $\mathbf{c.} -2, -6, -14$
- **d.** -1, 1, 5
- **e.** 3,5,9
- For the function $f(x) = x^3$, find the slope of **10.** the secant line between a = 1 and a + h = 3.


- **a.** 13
- **b.** 15
- **c.** 26
- **d.** 27
- **e.** 30
- 11. For the function f(x) = 2x + 3, find f'(4), the derivative at x = 4.
 - **a.** 2
 - **b.** 3
 - **c.** 4
 - **d.** 5
 - **e.** 11
- 12. For the function $f(x) = \sqrt{x}$, find the derivative function, f'(x).

 - **a.** $\frac{1}{2x}$ **b.** $\frac{1}{\sqrt{x}}$ **c.** $\frac{1}{4} + C$ **d.** $\frac{1}{2\sqrt{x}}$ **e.** $\frac{1}{2}x^{3/2}$

13. (8 points) Consider the triangle with vertices $\underline{A} = \langle 1, 2 \rangle$, $B = \langle 4, 1 \rangle$ and $C = \langle 2, 3 \rangle$. Find the altitude from the vertex C to the base \overline{AB} .

Hint: Use one of the following methods:

- (1) First find the area.
- (2) Find the distance from the point C to the line \overline{AB} .
- (3) Find the projection of \overrightarrow{AC} orthogonal to \overrightarrow{AB} .

14. (8 points) An object is dragged 10 feet across the floor, using a force of 85 pounds. Find the work done if the direction of the force is 60° above the horizontal.

15. (8 points) A physics student has constructed a catapult that will shoot a projectile a considerable distance. She has determined the flight of the projectile can be modeled by the following parametric equations: $x = 24\sqrt{2}t$ and $y = -16t^2 + 24\sqrt{2}t$. Determine how long the projectile will remain in the air and the distance it will travel using her model equations.

16. (8 points) Explain whether the function
$$f(x) = \begin{cases} x & \text{if } x < 1 \\ 2 - x & \text{if } 1 \le x < 2 \end{cases}$$
 is continuous or discontinuous at $x = 1$ and at $x = 2$.

17. (10 points) Find the derivative of $f(x) = \frac{5}{x} + 3x^2$ by the secant method.

18. (10 points) Find the equation of the line tangent to the curve $y = x^2$ at $x = \pi$. You must find the slope by the secant method.