MATH 171 Section 501

EXAM 3

Spring 1998 P. Yasskin

Part I. Multiple Choice (4 points each) No Calculators No part credit.

- 1. $\frac{d}{dx}[\sin^{-1}(e^{x^2})] =$
 - **a.** $\frac{2xe^{x^2}}{\sqrt{1-e^{2x^2}}}$
 - **b.** $-\frac{e^{x^2}}{\sqrt{1-e^{2x^2}}}$
 - c. $\frac{2xe^{x^2}}{1+(e^{x^2})^2}$
 - **d.** $\cos(e^{x^2})2xe^{x^2}$
 - e. None of these
- $2. \tan \left[\cos^{-1}\left(\frac{3}{5}\right)\right] =$
 - **a.** $\frac{3}{5}$
 - **b.** $\frac{3}{4}$
 - c. $\frac{3}{\sqrt{8}}$
 - **d.** $\frac{4}{5}$
 - **e.** $\frac{4}{3}$
- 3. Find the critical numbers of $f(x) = \sqrt{1 x^2}$ over the interval $-1 \le x \le 1$.
 - **a.** 0, -1, 1
 - **b.** -1, 1
 - **c.** 1
 - **d.** $-\sqrt{2}$, $\sqrt{2}$
 - e. None
- **4.** If you want to find the largest area of a rectangle whose base is on the x-axis and whose upper two vertices are on the parabola $y = 9 x^2$ then you need to
 - **a.** minimize $A = x(9 x^2)$
 - **b.** maximize $A = 2x\sqrt{9-x^2}$
 - c. minimize $A = x\sqrt{9-x^2}$
 - **d.** maximize $A = 2x(9 x^2)$
 - e. maximize $A = x(9 x^2)$

- 5. What is the largest value of the function $f(x) = x^3 2x^2 3$ on the interval [-2,3]?
 - **a.** -2
 - **b.** −3
 - c. $\frac{1}{4}\sqrt{2} 4$
 - **d.** 6
 - **e.** 14
- **6.** The position (in meters) of a particle falling through a fictitious medium is given by $s(t) = 4t^3 + 5t^2 + t + 1$. What is the acceleration of the particle when t = 3?
 - **a.** 82 m/s^2
 - **b.** 157 m/s^2
 - **c.** 139 m/s^2
 - **d.** 24 m/s^2
 - **e.** 4 m/s^2
- 7. If $f'(x) = 4x^3 6x^2$ and f(1) = 2, what is f(2)?
 - **a.** 8
 - **b.** 3
 - **c.** -8
 - **d.** 20
 - e. Cannot be determined from the information given.
- **8.** Which of the following is an antiderivative of xe^x ?
 - **a.** $xe^{x} + C$
 - **b.** $xe^x + e^x + C$
 - **c.** $xe^{x} + x + C$
 - **d.** $\frac{x^2 e^x}{2} + C$
 - **e.** $xe^{x} e^{x} + C$

- 9. For which of the following values of x does the function $f(x) = -x^3 + 2x^2 + 1$ have a local minimum?
 - **a.** $\frac{2}{3}$
 - **b.** $\frac{4}{3}$
 - **c.** 0
 - **d.** 1
 - **e.** –2
- 10. Which of the following is the graph of $y = 2x^3 4x^2 + 1$?

b.

c.

a.

d.

e.

- 11. Compute $\lim_{x \to 0} \frac{-\cos x + x^2 + 1}{x^2}$
 - **a.** 0
 - **b.** $\frac{1}{2}$
 - **c.** 1
 - **d.** $\frac{3}{2}$
 - e. Does not exist

- **Part II.** Work out problems (14 points each) Partial credit will be given. Calculators are permitted after the scantrons are collected.
- 12. A farmer wants to fence an area of 6 square miles in a rectangular field and then divide it in half with a fence parallel to one side of the rectangle. What are the dimensions of the field which minimize the total length of the fencing? Be sure draw a diagram and to state which dimension is the length of the extra dividing fence.

13. Four square corners are cut from a piece of cardboard 6 feet square, and the tabs are folded up to make an open box with a square base. What size corner should be cut to maximize the volume of the box? (See diagram.)

14.	A bacteria culture starts with 5000 bacteria and the population doubles every 15 minutes. a. Find an expression for the population for any time <i>t</i> .
	b. Find the number of bacteria after 45 minutes.
	c. When will the population reach 100,000?

15. Below is the graph of the derivative f'(x) of a function f(x), defined on the interval $-4 \le x \le 4$. Assume that the function is continuous on the interval. Use the graph to answer the following questions.

- **a.** Identify the critical points of f(x).
- **b.** Find the intervals where the function is increasing.
- **c.** Find the intervals where the function is concave up.
- **d.** Find the *x*-values of the inflection points.