ID_ Name___

MATH 172 Section 504

FINAL EXAM

Spring 1999

P. Yasskin

1-14	/70
15	/10
16	/10
17	/10+4

Multiple Choice: (5 points each)

- 1. If $\vec{a} = (2,0,1)$ and $\vec{b} = (-1,2,1)$ then $2\vec{a} 3\vec{b} =$
 - **a**. (1,6,5)
 - **b**. (1, -6, 5)
 - **c**. (7,6,-1)
 - **d**. (7, -6, -1)
 - **e**. (-1,6,-5)
- **2.** If $\vec{a} = (2,0,1)$ and $\vec{b} = (-1,2,1)$ then $\vec{a} \times \vec{b} =$
 - **a**. (-2, -3, 4)
 - **b**. (-2,3,4)
 - **c**. (-2,0,1)
 - **d**. (4,0,-1)
 - **e**. (4,3,-2)
- and $\vec{b} = (-1, 2, 1)$ are two edges of a triangle, find the area of 3. If $\vec{a} = (2,0,1)$ the triangle.
 - **a**. $\sqrt{3}$

 - **a.** $\sqrt{3}$ **b.** $\frac{3}{2}$ **c.** $\frac{1}{2}\sqrt{29}$ **d.** $\frac{29}{2}$ **e.** $\sqrt{29}$

4. If
$$\vec{u} = (\sqrt{2}, -1, 1)$$
 and $\vec{v} = (0, 1, -1)$ then the angle between \vec{u} and \vec{v} is $\theta =$

- **a**. 30°
- **b**. 45°
- c. 60°
- d. 120°
- **e**. 135°

5. The series
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n$$
 is the Taylor series about $x=2$ for (Hint: Just sum the series.)

- **a**. $\frac{1}{x}$
- **b**. $\frac{2}{x}$
- **c.** $\frac{1}{x-2}$
- **d.** $\frac{2}{x-2}$
- **e**. $\frac{1}{2(x-2)}$

6. Find the radius of convergence of the series
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n.$$

- **a**. 0
- **b**. 1
- **c**. 2
- **d**. 4
- **e**. 8

7. The series
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n!}$$
 is

- a. Divergent by the n^{th} term Divergence Test
- b. Convergent by the Ratio Test
- c. Divergent by the Ratio Test
- d. Convergent by the Integral Test
- e. Divergent by the Integral Test

8. Compute
$$\lim_{x\to 0} \frac{\sin(2x) - 2x + \frac{8x^3}{3}}{x^5}$$

- **a**. −∞
- **b**. (
- **c**. $\frac{4}{3}$
- **d**. $\frac{2}{5!}$
- **e**. ∞

9. Compute
$$\int (2x^3 - 1) \sin(x^4 - 2x) \ dx$$

a.
$$2\cos(x^4-2x)+C$$

b.
$$-2\cos(x^4-2x)+C$$

c.
$$\frac{1}{2}\cos(x^4-2x)+C$$

d.
$$-\frac{1}{2}\cos(x^4-2x)+C$$

e.
$$\cos(x^4 - 2x) + C$$

10. Compute
$$\int_{0}^{2} \frac{x^2}{\sqrt{4-x^2}} dx$$

- **a**. 1
- **b**. 2 **c**. $\frac{\pi}{4}$
- **e**. 2π

11. Compute
$$\int_0^{\pi/2} \sin^6 x \cos^3 x \ dx$$

- **a**. $\frac{1}{63}$ **b**. $\frac{2}{63}$ **c**. $\frac{1}{21}$ **d**. $\frac{4}{63}$ **e**. $\frac{2}{21}$

12.
$$\int_{1}^{\infty} \frac{1}{x + e^{2x}} dx$$
 is

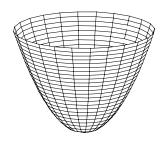
- **a.** Convergent by comparison to $\int_{1}^{\infty} \frac{1}{e^{2x}} dx$
- **b.** Divergent by comparison to $\int_{1}^{\infty} \frac{1}{e^{2x}} \frac{dx}{dx}$ **c.** Convergent by comparison to $\int_{1}^{\infty} \frac{1}{x} \frac{dx}{dx}$
- d. Divergent by comparison to

$$\int_{1}^{\infty} \frac{1}{e^{2x}} dx$$

$$\int_{1}^{1} \frac{e^{2x}}{\int_{1}^{\infty} \frac{1}{x} dx}$$

$$\int_{1}^{\infty} \frac{1}{x} dx$$

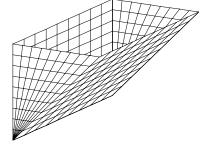
13. The basket shown at the right is 9 in tall. Its horizontal cross sections are circles whose radius is given by $r = 2\sqrt{y}$ where y is the height from the bottom. Find the volume of the basket.



- **a**. 216π
- **b**. 162π
- **c**. 108π
- **d**. 81π
- **e**. $\frac{81\pi}{2}$

14. A trough filled with water is 3m long and its end is a 45° right triangle which is 2m high and 2m wide. Find the work done to pump the water out of the top.

(ρ is the density of water and g is the acceleration of gravity.)



- **a**. $2\rho g$
- **b**. 3*ρg*
- c. $4\rho g$
- **d**. 6ρg
- e. $8\rho g$

15. (10 points) Compute $\int_0^1 x \arctan x \ dx.$

16. (10 points) Solve the differential equation $x^2 \frac{dy}{dx} + xy = \frac{2x^2}{1 + x^2}$ with the initial condition $y(1) = \ln 4$.

17. (10 points) Approximate $\int_0^{0.1} e^{-x^2} dx$ to 7 decimal places. (4 points extra credit:) How do you know it is accurate to 7 decimal places?