Name_____MATH 172HExam 3Spring 2020

Sections 200 Solutions P. Yasskin

Multiple Choice: (Points indicated. No part credit.)

- (1 points) An Aggie does not lie, cheat or steal or tolerate those who do.
 True X False
- 2. (1 points) Each answer is one of the following or a sum of these:

a rational number in lowest terms, e.g. $-\frac{217}{5}$ which is entered as "-217/5" a rational number in lowest terms times π , e.g. $\frac{217}{5}\pi$ which is entered as "217/5pi" exponentials such as e^4 or $3^{12/5}$ which are entered as "e^4" or "3^(12/5)" positive infinity, ∞ , which is entered as "infinity" negative infinity, $-\infty$, which is entered as "-infinity" convergent, which is entered as "convergent" divergent, which is entered as "divergent" Do not leave any spaces. Do not use decimals.

I read this.

True X False

3. (4 points) Compute
$$\sum_{n=1}^{\infty} \frac{(-1)^n 4}{2^n}$$

b.
$$-\frac{4}{3}$$
 correct choice
c. 4
d. -4
e. ∞

Solution: Geometric
$$a = \frac{-4}{2} = -2$$
 $r = -\frac{1}{2}$ $S = \frac{a}{1-r} = \frac{-2}{1+\frac{1}{2}} = \frac{-4}{3}$

1-9	/30	13	/18
10-11	/28	14	/8
12	/18	Total	/102

4. (4 points) Compute
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n-1} - \frac{n+1}{3n+2} \right).$$

a. 0
b.
$$\frac{1}{3}$$

c. $\frac{2}{3}$
d. $\frac{1}{6}$ correct choice

Solution: Telescoping

$$S_{k} = \sum_{n=1}^{\infty} \left(\frac{n}{3n-1} - \frac{n+1}{3n+2} \right) = \left(\frac{1}{2} - \frac{2}{5} \right) + \left(\frac{2}{5} - \frac{3}{8} \right) + \dots + \left(\frac{k}{3k-1} - \frac{k+1}{3k+2} \right) = \frac{1}{2} - \frac{k+1}{3k+2}$$
$$S = \lim_{k \to \infty} S_{k} = \lim_{k \to \infty} \left(\frac{1}{2} - \frac{k+1}{3k+2} \right) = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

5. (4 points) Compute $\lim_{n\to\infty} \left(\sqrt{n^6 + 5n^2} - \sqrt{n^6 - 4n^3}\right).$

- **a**. –∞
- $\boldsymbol{b}.\ -4$
- **c**. 2 correct choice
- **d**. 9
- **e**. ∞

Solution:
$$\lim_{n \to \infty} \left(\sqrt{n^6 + 5n^2} - \sqrt{n^6 - 4n^3} \right) \frac{\sqrt{n^6 + 5n^2} + \sqrt{n^6 - 4n^3}}{\sqrt{n^6 + 5n^2} + \sqrt{n^6 - 4n^3}} = \lim_{n \to \infty} \frac{(n^6 + 5n^2) - (n^6 - 4n^3)}{\sqrt{n^6 + 5n^2} + \sqrt{n^6 - 4n^3}}$$
$$= \lim_{n \to \infty} \frac{5n^2 + 4n^3}{\sqrt{n^6 + 5n^2} + \sqrt{n^6 - 4n^3}} \cdot \frac{\frac{1}{n^3}}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{\frac{5}{n} + 4}{\sqrt{1 + 5n^{-4}} + \sqrt{1 - 2n^{-3}}} = \frac{4}{2} = 2$$

6. (4 points) Compute $\lim_{n \to \infty} \left(\frac{1}{n^2}\right)^{\frac{4}{\ln n}}$. If divergent, enter "infinity" or "-infinity".

a. e^{-8} correct choice b. e^{-2} c. e^{2} d. e^{8} e. ∞ Solution: $\lim_{n \to \infty} \left(\frac{1}{n^{2}}\right)^{\frac{4}{\ln n}} = e^{\ln \lim_{n \to \infty} \left(\frac{1}{n^{2}}\right)^{\frac{4}{\ln n}}} = \exp \lim_{n \to \infty} \ln \left(\frac{1}{n^{2}}\right)^{\frac{4}{\ln n}}$ $= \exp \lim_{n \to \infty} \frac{4}{\ln n} \ln(n^{-2}) = \exp \lim_{n \to \infty} \frac{-8}{\ln n} \ln(n) = e^{-8}$ 7. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n}$. If divergent, enter "infinity" or "-infinity". **a.** sin 2

- . . .
- **b**. $\sin 2 1$
- **c**. cos 2
- **d**. $\cos 2 1$ correct choice
- **e**. ∞

Solution: A standard Maclaurin series is $\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$.

- At x = 2 this says $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} = \cos 2$. Our series starts at n = 1. So $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} 2^{2n} 1 = \cos 2 1$
- 8. (4 points) If $S = \sum_{n=1}^{\infty} a_n$ and $S_k = \frac{k}{2k+1}$, then **a**. $a_4 = \frac{4}{9}$
 - **b.** $a_4 = \frac{3}{7}$ **c.** $a_4 = \frac{1}{2}$ **d.** $a_4 = \frac{1}{63}$ correct choice **e.** $a_4 = \frac{4}{21}$

Solution: $S_4 = a_1 + a_2 + a_3 + a_4 = \frac{4}{9}$ $S_3 = a_1 + a_2 + a_3 = \frac{3}{7}$ $a_4 = S_4 - S_3 = \frac{4}{9} - \frac{3}{7} = \frac{1}{63}$

9. (4 points) If the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is approximated by the 999th partial sum $S_{999} = \sum_{n=1}^{999} \frac{(-1)^{n+1}}{n^2} \approx 0.90154267787044571280$, how many digits of accuracy are guaranteed in this

approximation? For example, if the error is $|E_{999}| < 10^{-5}$, then only the digits 0.9015 are accurate, and you would answer 4.

- **a**. 4,
- **b**. 5 correct choice
- **c**. 10
- **d**. 1000
- **e**. 1000000

Solution: Since this is an alternating, decreasing series, the error is less than the absolute value of the next term which is $|E_{999}| < \frac{1}{1000^2} = 10^{-6}$. So the approximation is good to 5 terms.

- **10**. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ can be shown to diverge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
 - **a**. *n*th-Term test for Divergence:

Yes X No
$$\lim_{n \to \infty} \frac{1}{n-1} = 0$$
 Test Fails

b. Integral Test:

XYes **No**
$$\int_{2}^{\infty} \frac{1}{n-1} dn = \left[\ln(n-1) \right]_{2}^{\infty} = \infty$$

c. p-Series Test:

X_Yes No
$$\sum_{n=2}^{\infty} \frac{1}{n-1} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$
 p-series with $p = 1$ harmonic

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

X_Yes No
$$\frac{1}{n-1} > \frac{1}{n}$$
 and $\sum_{n=2}^{\infty} \frac{1}{n}$ diverges

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

Yes
$$\lim_{n \to \infty} \frac{n}{n-1} = 1 \text{ and } 0 < 1 < \infty$$

f. Ratio Test:

Yes X No
$$\lim_{n \to \infty} \frac{n-1}{(n+1)-1} = 1$$
 Test Fails

g. Alternating Series Test:

_X__No This series is not alternating.

- **11**. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n^2 1}$ can be shown to converge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
 - **a**. *n*th-Term test for Divergence:

Yes X No
$$\lim_{n \to \infty} \frac{1}{n^2 - 1} = 0$$
 Test Fails

b. Integral Test:

X_Yes
$$\int_2^\infty \frac{1}{n^2 - 1} dn = \left[\frac{1}{2}\ln\left(\frac{n-1}{n+1}\right)\right]_2^\infty = \frac{1}{2}\ln 3 < \infty$$

c. p-Series Test:

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^2}$:

X Yes No
$$\lim_{n \to \infty} \frac{n^2}{n^2 - 1} = 1$$
 and $0 < 1 < \infty$

f. Ratio Test:

Yes X No
$$\lim_{n \to \infty} \frac{n^2 - 1}{(n+1)^2 - 1} = 1$$
 Test Fails

No

g. Alternating Series Test:

This series is not alternating.

- **12.** (18 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-2)^n}{1+\sqrt{n}} (x-3)^n.$
 - **a**. Find the radius of convergence and state the open interval of absolute convergence.

Solution: To find the radius, we use the Ratio Test. $|a_n| = \frac{2^n |x-3|^n}{1+\sqrt{n}}$ $|a_{n+1}| = \frac{2^{n+1} |x-3|^{n+1}}{1+\sqrt{n+1}}$ $\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{2^{n+1} |x-3|^{n+1}}{1+\sqrt{n+1}} \frac{1+\sqrt{n}}{2^n |x-3|^n} = 2|x-3| \lim_{n \to \infty} \frac{1+\sqrt{n}}{1+\sqrt{n+1}} = 2|x-3| < 1$ $|x-3| < \frac{1}{2}$ So $R = \frac{1}{2}$. Absolutely convergent on $\left(\frac{5}{2}, \frac{7}{2}\right)$

R = . Absolutely convergent on (,).

b. Check the Left Endpoint:

Solution: The Interval of Convergence.is:

The series becomes Circle one: *x* =____ Reasons: Convergent Solution: $x = \frac{5}{2}$: $\sum_{n=1}^{\infty} \frac{(-2)^n}{1+\sqrt{n}} \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ Divergent Compare this to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a *p*-series with $p = \frac{1}{2} < 1$ and so diverges. We can't use the Simple Comparison Test because $\frac{1}{1+\sqrt{n}} < \frac{1}{\sqrt{n}}$. So we compute: $L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{1}{1 + \sqrt{n}} \cdot \frac{\sqrt{n}}{1} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{n}} + 1} = 1.$ Since $0 < L = 1 < \infty$, the series $\sum_{n=1}^{\infty} \frac{1}{1 + \sqrt{n}}$ diverges by the Limit Comparison Test. c. Check the Right Endpoint: The series becomes Circle one: *x* =____ Convergent Reasons: $\sum_{n=1}^{\infty} \frac{(-2)^n}{1+\sqrt{n}} \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt{n}}$ **Solution**: $x = \frac{7}{2}$: Divergent This converges by the Alternating Series Test because $\frac{1}{1+\sqrt{n}}$ is positive, decreasing and $\lim_{n\to\infty}\frac{1}{1+\sqrt{n}}=0.$ d. State the Interval of Convergence. Interval= _____

 $\left(\frac{5}{2},\frac{7}{2}\right)$

13. (18 points) Determine whether the recursively defined sequence $a_1 = \sqrt{6}$ and $a_{n+1} = \frac{(a_n)^2 + 24}{10}$ is convergent or divergent. If convergent, find the limit. If divergent, say infinity or -infinity.

a. Find the first 3 terms: $a_1 = _ a_2 = _ a_3 = _$

Solution: $a_1 = \underline{\sqrt{6}} \qquad a_2 = \underline{3} \qquad a_3 = \underline{3.3}$

b. Assuming the limit $\lim_{n \to \infty} a_n$ exists, find the possible limits.

Solution: Assume $\lim_{n \to \infty} a_n = L$. Then $\lim_{n \to \infty} a_{n+1} = L$ also. From the recursion relation: $L = \frac{L^2 + 24}{10}$ $L^2 - 10L + 24 = 0$ (L - 4)(L - 6) = 0 L = 4, 6

c. Prove the sequence is increasing or decreasing (as appropriate).

Solution: From the first 3 terms, we expect the sequence is increasing. So we want to prove $a_{n+1} > a_n > 0$.

Initialization Step: Since 9 > 6 > 0, we know $a_2 = 3 = \sqrt{9} > \sqrt{6} = a_1 > 0$ Induction Step: Assume $a_{k+1} > a_k > 0$. We need to prove $a_{k+2} > a_{k+1} > 0$. Proof: We need > 0 so we can square both sides of an inequality.

$$a_{k+1} > a_k > 0 \implies (a_{k+1})^2 > (a_k)^2 > 0 \implies \frac{(a_{k+1})^2 + 24}{10} > \frac{(a_k)^2 + 24}{10} > \frac{24}{10} > 0$$
$$\implies a_{k+2} > a_{k+1} > 0$$

d. Prove the sequence is bounded or unbounded above or below (as appropriate).

Solution: The sequence starts at $\sqrt{6} < 4$, and increases and has a limit of 4 or 6 if it exists. So we try to prove $a_n < 4$. Initialization Step: $a_1 = \sqrt{6} < 4$ Induction Step: Assume $a_k < 4$. We need to prove $a_{k+1} < 4$. Proof: $(a_k)^2 + 24$

$$a_k < 4 \implies (a_k)^2 < 16 \implies (a_k)^2 + 24 < 40 \implies \frac{(a_k)^2 + 24}{10} < 4 \implies a_{k+1} < 4$$

e. State whether the sequence is convergent or divergent and name the theorem. If convergent, determine the limit. If divergent, determine if it is infinity or -infinity.

Solution: The sequence is convergent by the Bounded Monotonic Sequence Theorem. Since the limit must be 4 or 6 and it increases from $\sqrt{6}$ and is bounded above by 4, the limit must be $\lim_{n \to \infty} a_n = 4$.

14. (8 points) A ball is dropped from a height of 72 feet. Each time it bounces it reaches a height which is $\frac{1}{3}$ of the height on the previous bounce. What is the total distance travelled by the ball (with an infinite number of bounces)?

Solution: The ball drops 72 ft, rises and falls 24 ft, rises and falls 8 ft, etc. The total distance is:

$$D = 72 + 2\left(24 + 8 + \frac{8}{3} + \dots\right) = 72 + 2\sum_{n=0}^{\infty} 24\left(\frac{1}{3}\right)^n = 72 + 2\left(\frac{24}{1 - \frac{1}{3}}\right) = 72 + 2(36) = 144$$