Name \qquad
MATH 172H
Sections 200
Exam 3
Spring 2020

Multiple Choice: (Points indicated. No part credit.)

1. (1 points) An Aggie does not lie, cheat or steal or tolerate those who do.

True $\quad X \quad$ False \square
2. (1 points) Each answer is one of the following or a sum of these:
a rational number in lowest terms, e.g. $-\frac{217}{5}$ which is entered as " $-217 / 5$ "
a rational number in lowest terms times π, e.g. $\frac{217}{5} \pi$ which is entered as "217/5pi"
exponentials such as e^{4} or $3^{12 / 5}$ which are entered as " $e^{\wedge} 4$ " or " $3^{\wedge}(12 / 5)$ "
positive infinity, ∞, which is entered as "infinity"
negative infinity, $-\infty$, which is entered as "-infinity"
convergent, which is entered as "convergent"
divergent, which is entered as "divergent"
Do not leave any spaces. Do not use decimals.
I read this.
True $\quad \mathrm{X}$
False
3. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-1)^{n} 4}{2^{n}}$.
a. 0
b. $-\frac{4}{3}$ correct choice
c. 4
d. -4
e. ∞

Solution: Geometric $\quad a=\frac{-4}{2}=-2 \quad r=-\frac{1}{2} \quad S=\frac{a}{1-r}=\frac{-2}{1+\frac{1}{2}}=\frac{-4}{3}$

$1-9$	$/ 30$	13	$/ 18$
$10-11$	$/ 28$	14	$/ 8$
12	$/ 18$	Total	$/ 102$

4. (4 points) Compute $\sum_{n=1}^{\infty}\left(\frac{n}{3 n-1}-\frac{n+1}{3 n+2}\right)$.
a. 0
b. $\frac{1}{3}$
c. $\frac{2}{3}$
d. $\frac{1}{6}$ correct choice
e. ∞

Solution: Telescoping
$S_{k}=\sum_{n=1}^{\infty}\left(\frac{n}{3 n-1}-\frac{n+1}{3 n+2}\right)=\left(\frac{1}{2}-\frac{2}{5}\right)+\left(\frac{2}{5}-\frac{3}{8}\right)+\cdots+\left(\frac{k}{3 k-1}-\frac{k+1}{3 k+2}\right)=\frac{1}{2}-\frac{k+1}{3 k+2}$
$S=\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(\frac{1}{2}-\frac{k+1}{3 k+2}\right)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}$
5. (4 points) Compute $\lim _{n \rightarrow \infty}\left(\sqrt{n^{6}+5 n^{2}}-\sqrt{n^{6}-4 n^{3}}\right)$.
a. $-\infty$
b. -4
c. 2 correct choice
d. 9
e. ∞

Solution: $\lim _{n \rightarrow \infty}\left(\sqrt{n^{6}+5 n^{2}}-\sqrt{n^{6}-4 n^{3}}\right) \frac{\sqrt{n^{6}+5 n^{2}}+\sqrt{n^{6}-4 n^{3}}}{\sqrt{n^{6}+5 n^{2}}+\sqrt{n^{6}-4 n^{3}}}=\lim _{n \rightarrow \infty} \frac{\left(n^{6}+5 n^{2}\right)-\left(n^{6}-4 n^{3}\right)}{\sqrt{n^{6}+5 n^{2}}+\sqrt{n^{6}-4 n^{3}}}$
$=\lim _{n \rightarrow \infty} \frac{5 n^{2}+4 n^{3}}{\sqrt{n^{6}+5 n^{2}}+\sqrt{n^{6}-4 n^{3}}} \cdot \frac{\frac{1}{n^{3}}}{\frac{1}{n 3}}=\lim _{n \rightarrow \infty} \frac{\frac{5}{n}+4}{\sqrt{1+5 n^{-4}}+\sqrt{1-2 n^{-3}}}=\frac{4}{2}=2$
6. (4 points) Compute $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}\right)^{\frac{4}{\ln n}}$. If divergent, enter "infinity" or "-infinity".
a. e^{-8} correct choice
b. e^{-2}
c. e^{2}
d. e^{8}
e. ∞

$$
=\exp \lim _{n \rightarrow \infty} \frac{4}{\ln n} \ln \left(n^{-2}\right)=\exp \lim _{n \rightarrow \infty} \frac{-8}{\ln n} \ln (n)=e^{-8}
$$

7. (4 points) Compute $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} 2^{2 n}$. If divergent, enter "infinity" or "-infinity".
a. $\sin 2$
b. $\sin 2-1$
c. $\cos 2$
d. $\cos 2-1$ correct choice
e. ∞

Solution: A standard Maclaurin series is $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$.
At $x=2$ this says $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} 2^{2 n}=\cos 2$. Our series starts at $n=1$. So
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} 2^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} 2^{2 n}-1=\cos 2-1$
8. (4 points) If $S=\sum_{n=1}^{\infty} a_{n}$ and $S_{k}=\frac{k}{2 k+1}$, then
a. $a_{4}=\frac{4}{9}$
b. $a_{4}=\frac{3}{7}$
c. $a_{4}=\frac{1}{2}$
d. $a_{4}=\frac{1}{63} \quad$ correct choice
e. $a_{4}=\frac{4}{21}$

Solution: $S_{4}=a_{1}+a_{2}+a_{3}+a_{4}=\frac{4}{9} \quad S_{3}=a_{1}+a_{2}+a_{3}=\frac{3}{7} \quad a_{4}=S_{4}-S_{3}=\frac{4}{9}-\frac{3}{7}=\frac{1}{63}$
9. (4 points) If the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ is approximated by the $999^{\text {th }}$ partial sum $S_{999}=\sum_{n=1}^{999} \frac{(-1)^{n+1}}{n^{2}} \approx 0.90154267787044571280$, how many digits of accuracy are guaranteed in this approximation? For example, if the error is $\left|E_{999}\right|<10^{-5}$, then only the digits 0.9015 are accurate, and you would answer 4.
a. 4 ,
b. 5 correct choice
c. 10
d. 1000
e. 1000000

Solution: Since this is an alternating, decreasing series, the error is less than the absolute value of the next term which is $\left|E_{999}\right|<\frac{1}{1000^{2}}=10^{-6}$. So the approximation is good to 5 terms.
10. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n-1}$ can be shown to diverge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
a. $n^{\text {th }}$-Term test for Divergence:

$$
\square \text { Yes } \quad \mathrm{X} \text { No } \lim _{n \rightarrow \infty} \frac{1}{n-1}=0 \quad \text { Test Fails }
$$

b. Integral Test:

$$
\pm \text { X_Yes } \quad \text { No } \int_{2}^{\infty} \frac{1}{n-1} d n=[\ln (n-1)]_{2}^{\infty}=\infty
$$

c. p-Series Test:
$\square \mathrm{X} \quad$ Yes \quad No $\sum_{n=2}^{\infty} \frac{1}{n-1}=1+\frac{1}{2}+\frac{1}{3}+\cdots \quad p$-series with $p=1 \quad$ harmonic
d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$:

f. Ratio Test:

g. Alternating Series Test:
\square Yes $\quad \mathrm{X}$ _ No This series is not alternating.
11. (14 points) The series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ can be shown to converge by which of the following Convergence Tests? Check Yes for all that work; check No for all that don't work.
a. $n^{\text {th }}$-Term test for Divergence:

$$
\square \text { Yes } \quad \mathrm{X} \text { No } \lim _{n \rightarrow \infty} \frac{1}{n^{2}-1}=0 \quad \text { Test Fails }
$$

b. Integral Test:

$$
\text { X_Yes } \square \text { No } \int_{2}^{\infty} \frac{1}{n^{2}-1} d n=\left[\frac{1}{2} \ln \left(\frac{n-1}{n+1}\right)\right]_{2}^{\infty}=\frac{1}{2} \ln 3<\infty
$$

c. p-Series Test:

$$
\text { X_No This is not a } p \text {-series. }
$$

d. Simple Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$:

$$
\square \text { Yes } \quad \mathrm{X}=\text { No } \quad \frac{1}{n^{2}-1}>\frac{1}{n^{2}} \quad \text { Wrong inequality. }
$$

e. Limit Comparison Test comparing to $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$:

$$
\square \text { Yes } \square \text { No } \lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=1 \text { and } 0<1<\infty
$$

f. Ratio Test:

g. Alternating Series Test:

Work Out: (Points indicated. Part credit possible. Show all work.)
12. (18 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{1+\sqrt{n}}(x-3)^{n}$.
a. Find the radius of convergence and state the open interval of absolute convergence.
$R=\ldots$. Absolutely convergent on \qquad , \qquad).

Solution: To find the radius, we use the Ratio Test. $\quad\left|a_{n}\right|=\frac{2^{n}|x-3|^{n}}{1+\sqrt{n}} \quad\left|a_{n+1}\right|=\frac{2^{n+1}|x-3|^{n+1}}{1+\sqrt{n+1}}$
$\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{2^{n+1}|x-3|^{n+1}}{1+\sqrt{n+1}} \frac{1+\sqrt{n}}{2^{n}|x-3|^{n}}=2|x-3| \lim _{n \rightarrow \infty} \frac{1+\sqrt{n}}{1+\sqrt{n+1}}=2|x-3|<1$
$|x-3|<\frac{1}{2}$ So $R=\frac{1}{2}$. Absolutely convergent on $\left(\frac{5}{2}, \frac{7}{2}\right)$
b. Check the Left Endpoint:
$x=$ \qquad The series becomes \qquad Circle one:
Reasons:
Convergent
Solution: $x=\frac{5}{2}: \quad \sum_{n=1}^{\infty} \frac{(-2)^{n}}{1+\sqrt{n}}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$
Divergent
Compare this to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ which is a p-series with $p=\frac{1}{2}<1$ and so diverges.
We can't use the Simple Comparison Test because $\frac{1}{1+\sqrt{n}}<\frac{1}{\sqrt{n}}$. So we compute:

$$
L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}} \cdot \frac{\sqrt{n}}{1}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{\sqrt{n}}+1}=1 .
$$

Since $0<L=1<\infty$, the series $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ diverges by the Limit Comparison Test.
c. Check the Right Endpoint:
$x=$ \qquad The series becomes \qquad Circle one:
Reasons:
Convergent
Solution: $\quad x=\frac{7}{2}: \quad \sum_{n=1}^{\infty} \frac{(-2)^{n}}{1+\sqrt{n}}\left(\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+\sqrt{n}}$
Divergent
This converges by the Alternating Series Test because $\frac{1}{1+\sqrt{n}}$ is positive, decreasing and $\lim _{n \rightarrow \infty} \frac{1}{1+\sqrt{n}}=0$.
d. State the Interval of Convergence.

Interval= \qquad
Solution: The Interval of Convergence.is: $\quad\left(\frac{5}{2}, \frac{7}{2}\right]$
13. (18 points) Determine whether the recursively defined sequence $a_{1}=\sqrt{6}$ and $a_{n+1}=\frac{\left(a_{n}\right)^{2}+24}{10}$ is convergent or divergent. If convergent, find the limit. If divergent, say infinity or -infinity.
a. Find the first 3 terms: $a_{1}=$ \qquad

$$
a_{2}=
$$ $a_{3}=$ \qquad

Solution: $a_{1}=\ldots \sqrt{6} \quad a_{2}=\ldots 3 _\quad a_{3}=\ldots 3.3$
b. Assuming the limit $\lim _{n \rightarrow \infty} a_{n}$ exists, find the possible limits.

Solution: Assume $\lim _{n \rightarrow \infty} a_{n}=L$. Then $\lim _{n \rightarrow \infty} a_{n+1}=L$ also. From the recursion relation:

$$
L=\frac{L^{2}+24}{10} \quad L^{2}-10 L+24=0 \quad(L-4)(L-6)=0 \quad L=4,6
$$

c. Prove the sequence is increasing or decreasing (as appropriate).

Solution: From the first 3 terms, we expect the sequence is increasing. So we want to prove $a_{n+1}>a_{n}>0$.
Initialization Step: Since $9>6>0$, we know $a_{2}=3=\sqrt{9}>\sqrt{6}=a_{1}>0$
Induction Step: Assume $a_{k+1}>a_{k}>0$. We need to prove $a_{k+2}>a_{k+1}>0$.
Proof: We need >0 so we can square both sides of an inequality.

$$
\begin{aligned}
a_{k+1} & >a_{k}>0 \Rightarrow\left(a_{k+1}\right)^{2}>\left(a_{k}\right)^{2}>0 \Rightarrow \frac{\left(a_{k+1}\right)^{2}+24}{10}>\frac{\left(a_{k}\right)^{2}+24}{10}>\frac{24}{10}>0 \\
& \Rightarrow a_{k+2}>a_{k+1}>0
\end{aligned}
$$

d. Prove the sequence is bounded or unbounded above or below (as appropriate).

Solution: The sequence starts at $\sqrt{6}<4$, and increases and has a limit of 4 or 6 if it exists. So we try to prove $a_{n}<4$.
Initialization Step: $\quad a_{1}=\sqrt{6}<4$
Induction Step: Assume $a_{k}<4$. We need to prove $a_{k+1}<4$.
Proof:

$$
a_{k}<4 \Rightarrow\left(a_{k}\right)^{2}<16 \Rightarrow\left(a_{k}\right)^{2}+24<40 \Rightarrow \frac{\left(a_{k}\right)^{2}+24}{10}<4 \Rightarrow a_{k+1}<4
$$

e. State whether the sequence is convergent or divergent and name the theorem. If convergent, determine the limit. If divergent, determine if it is infinity or -infinity.

Solution: The sequence is convergent by the Bounded Monotonic Sequence Theorem. Since the limit must be 4 or 6 and it increases from $\sqrt{6}$ and is bounded above by 4 , the limit must be $\lim _{n \rightarrow \infty} a_{n}=4$.
14. (8 points) A ball is dropped from a height of 72 feet. Each time it bounces it reaches a height which is $\frac{1}{3}$ of the height on the previous bounce. What is the total distance travelled by the ball (with an infinite number of bounces)?

Solution: The ball drops 72 ft , rises and falls 24 ft , rises and falls 8 ft , etc. The total distance is:

$$
D=72+2\left(24+8+\frac{8}{3}+\cdots\right)=72+2 \sum_{n=0}^{\infty} 24\left(\frac{1}{3}\right)^{n}=72+2\left(\frac{24}{1-\frac{1}{3}}\right)=72+2(36)=144
$$

