Name	

MATH 221 Exam 1 Version B Fall 2019

Section 505 Solutions P. Yasskin

1-9	/54	11	/15
10	/36	Total	/105

Multiple Choice: (6 points each. No part credit.)

- **1**. Find the angle between the vectors $\vec{a} = \langle 1, 2, 1 \rangle$ and $\vec{b} = \langle 0, 1, 1 \rangle$.
 - **a**. 90°
 - **b**. 60°
 - **c**. 45°
 - d. 30° Correct Choice
 - **e**. 0°

Solution:
$$\vec{a} \cdot \vec{b} = 2 + 1 = 3$$
 $|\vec{a}| = \sqrt{1 + 4 + 1} = \sqrt{6}$ $|\vec{b}| = \sqrt{1 + 1} = \sqrt{2}$ $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{3}{\sqrt{6}\sqrt{2}} = \frac{3}{\sqrt{12}} = \frac{\sqrt{3}}{2}$ $\theta = 30^{\circ}$

2. Two tugboats are pulling on a barge with the forces:

$$\vec{F}_1 = \langle 4, 2 \rangle$$
 and $\vec{F}_2 = \langle -2, 1 \rangle$

They move the barge from P = (1,0) to Q = (2,4). Find the work done.

- **a**. 12
- **b**. 14 Correct Choice
- **c**. 16
- **d**. 18
- **e**. 20

Solution: The force is $\vec{F} = \vec{F}_1 + \vec{F}_2 = \langle 4, 2 \rangle + \langle -2, 1 \rangle = \langle 2, 3 \rangle$. The displacement is $\vec{D} = \overrightarrow{PQ} = Q - P = (2, 4) - (1, 0) = (1, 4)$. So the work is $\vec{W} = \vec{F} \cdot \vec{D} = 2 + 12 = 14$.

- 3. If \vec{u} points West and \vec{v} points NorthEast, where does $\vec{u} \times \vec{v}$ point?
 - a. Up
 - b. Down Correct Choice
 - c. SouthWest
 - d. SouthEast
 - e. South

Solution: Hold your right hand with the fingers pointing West and the palm facing NorthEast. Then the thumb points Down.

4. If $|\vec{u}| = 2$, $|\vec{v}| = 5$ and $\vec{u} \cdot \vec{v} = 6$, what is $|\vec{u} \times \vec{v}|$?

- **a**. 2
- **b**. 4
- **c**. 6
- **d**. 8 **Correct Choice**
- **e**. 64

Solution: $|\vec{u} \times \vec{v}|^2 = |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2 = 2^2 5^2 - 6^2 = 100 - 36 = 64$ So $|\vec{u} \times \vec{v}| = 8$.

5. Find the area of the triangle with vertices A = (2,3,4), B = (4,3,2) and C = (4,2,4).

- a. $\sqrt{3}$
- **b**. $\sqrt{6}$ **Correct Choice**
- **c**. 6
- **d**. $\sqrt{12}$
- **e**. 12

Solution: Two edges are $\overrightarrow{AB} = B - A = \langle 2, 0, -2 \rangle$ and $\overrightarrow{AC} = C - A = \langle 2, -1, 0 \rangle$.

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -2 \\ 2 & -1 & 0 \end{vmatrix} = \hat{i}(0-2) - \hat{j}(0-4) + \hat{k}(-2-0) = \langle -2, -4, -2 \rangle$$

$$A = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \frac{1}{2} \sqrt{4 + 16 + 4} = \frac{1}{2} \sqrt{24} = \sqrt{6}$$

6. Find a vector \vec{w} of length 6 in the same direction as $\vec{v} = \langle 2, 1, -2 \rangle$. The sum of its components is

- **a**. 12
- **b**. 8
- **c**. 6
- **d**. 2 **Correct Choice**
- **e**. 1

Solution:
$$|\vec{v}| = \sqrt{4+1+4} = 3$$
 $\hat{v} = \frac{\vec{v}}{|\vec{v}|} = \left\langle \frac{2}{3}, \frac{1}{3}, \frac{-2}{3} \right\rangle$

We want $|\vec{w}|=6$ and $\hat{w}=\hat{v}=\left\langle \frac{2}{3},\frac{1}{3},\frac{-2}{3}\right\rangle$. So $\vec{w}=|\vec{w}|\hat{w}=6\left\langle \frac{2}{3},\frac{1}{3},\frac{-2}{3}\right\rangle =\langle 4,2,-4\rangle$.

The sum of its components is 4+2-4=2.

- 7. Classify the surface: $2x^2 8x y^2 + 6y + z^2 = 2$.
 - a. Hyperboloid of 1 sheet Correct Choice
 - **b**. Hyperboloid of 2 sheets
 - c. Cone
 - d. Hyperbolic Paraboloid
 - e. Hyperbolic Cylinder

Solution: Complete the squares: $2(x^2 - 2x + 4) - (y^2 - 6x + 9) + z^2 = 2 + 8 - 9$ $2(x-2)^2 - (y-3)^2 + z^2 = 1$ Hyperboloid of 1 sheet

- **8**. Find the point where the line (x,y,z) = (1+3t,2+2t,3+t) intersects the plane 2x-y+z=13. The sum of the components is:
 - **a**. -6
 - **b**. 6
 - **c**. 12
 - d. 18 Correct Choice
 - e. No intersection. They are parallel.

Solution: Substitute the line into the plane and solve for *t*:

$$2(1+3t)-(2+2t)+3+t=13$$
 or $3+5t=13$ or $t=2$

Substitute back into the line:
$$(x,y,z) = (1+3 \cdot 2, 2+2 \cdot 2, 3+2) = (7,6,5)$$

Check in the plane:
$$2 \cdot 7 - 6 + 5 = 13$$

The sum of the components is: 7 + 6 + 5 = 18

9. Find the plane through the point P = (0,5,3) with tangent vectors $\vec{u} = \langle 2,1,3 \rangle$ and $\vec{v} = \langle -1,2,-2 \rangle$. Its *z*-intercept is:

a.
$$z = 2$$

b.
$$z = 4$$
 Correct Choice

c.
$$z = 5$$

d.
$$z = 10$$

e.
$$z = 20$$

Solution: The normal is

$$\vec{N} = \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ -1 & 2 & -2 \end{vmatrix} = \hat{i}(-2 - 6) - \hat{j}(-4 + 3) + \hat{k}(4 + 1) = \langle -8, 1, 5 \rangle$$

The plane is $\vec{N} \cdot X = \vec{N} \cdot P$ or -8x + y + 5z = -8(0) + (5) + 5(3) = 20.

The z-intercept satisfies 5z = 20 or z = 4.

Work Out: (Points indicated. Part credit possible. Show all work.)

- **10**. (36 points) For the curve $\vec{r}(t) = \langle t, 2e^t, e^{2t} \rangle$ compute each of the following:
 - **a**. (6 pts) The velocity \vec{v}

Solution: $\vec{v} = \langle 1, 2e^t, 2e^{2t} \rangle$

b. (6 pts) The speed $\frac{ds}{dt}$ (Simplify!)

Solution:
$$\frac{ds}{dt} = |\vec{v}| = \sqrt{1 + 4e^{2t} + 4e^{4t}} = \sqrt{(1 + 2e^{2t})^2} = 1 + 2e^{2t}$$
 $\frac{ds}{dt} = \frac{1 + 2e^{2t}}{1 + 2e^{2t}}$

c. (6 pts) The tangential acceleration a_T

Solution:
$$a_T = \frac{d|\vec{v}|}{dt} = \frac{d}{dt}(1 + 2e^{2t}) = 4e^{2t}$$
 $a_T = 4e^{2t}$

d. (6 pts) The length of this curve between (0,2,1) and $(1,2e,e^2)$.

Solution:
$$|\vec{v}| = 1 + 2e^{2t}$$
 $(0,2,1) = \vec{r}(0)$ $(1,2e,e^2) = \vec{r}(1)$

$$L = \int_{(0,2,1)}^{(1,2e,e^2)} ds = \int_0^1 |\vec{v}| dt = \int_0^1 (1 + 2e^{2t}) dt = \left[t + e^{2t}\right]_0^1 = 1 + e^2 - 1 = e^2$$

$$L = \underline{e^2}$$

e. (6 pts) The mass of a wire in the shape of this curve between (0,2,1) and $(1,2e,e^2)$ if the linear mass density is $\delta = yz$.

Solution:
$$|\vec{v}| = 1 + 2e^{2t}$$
 $\delta = yz = 2e^t e^{2t} = 2e^{3t}$ $M = \int_{(0,2,1)}^{(1,2e,e^2)} \delta \, ds = \int_0^1 yz |\vec{v}| \, dt$ $M = \int_0^1 2e^{3t} (1 + 2e^{2t}) \, dt = \left[\frac{2e^{3t}}{3} + \frac{4e^{5t}}{5} \right]_0^1 = \frac{2e^3}{3} + \frac{4e^5}{5} - \frac{2}{3} - \frac{4}{5}$ $M = \frac{2e^3}{3} + \frac{4e^5}{5} - \frac{2}{3} - \frac{4}{5}$

f. (6 pts) The work done to move a bead along of a wire in the shape of this curve between (0,2,1) and $(1,2e,e^2)$ by the force $\vec{F} = \langle 0,z,y \rangle$.

Solution:
$$\vec{F}(\vec{r}(t)) = \langle 0, z, y \rangle = \langle 0, e^{2t}, 2e^t \rangle$$
 $\vec{v} = \langle 1, 2e^t, 2e^{2t} \rangle$
 $\vec{F} \cdot \vec{v} = e^{2t} \cdot 2e^t + 2e^t \cdot 2e^{2t} = 6e^{3t}$
 $W = \int_{(0,2,1)}^{(1,2e,e^2)} \vec{F} \cdot d\vec{s} = \int_0^1 \vec{F} \cdot \vec{v} dt = \int_0^1 6e^{3t} dt = \left[2e^{3t} \right]_0^1 = 2e^3 - 2$
 $W = 2e^3 - 2$

11. (15 points) Consider the two straight lines:

$$L_1$$
: $(x,y,z) = (2+t,3,4+2t)$
 L_2 : $(x,y,z) = (1,2+t,3-2t)$

Are they parallel or skew or do they intersect? If they intersect, find the point of intersection

Solution: The direction vectors are $\vec{v}_1 = \langle 1, 0, 2 \rangle$ and $\vec{v}_2 = \langle 0, 1, -2 \rangle$. Since one is not a multiple of the other, the lines are not parallel. We first change the parameter name on the second line:

$$L_2$$
: $(x,y,z) = (1,2+s,3-2s)$

We equate the x, y and z components:

$$2+t = 1$$
$$3 = 2+s$$
$$4+2t = 3-2s$$

The first two equations say t = -1 and s = 1. Using these, the third equation says 4 + 2(-1) = 3 - 2(1) or 2 = 1

This is impossible. So there is no solution. There is no intersection. The lines are skew!