Name_____

MATH 221 Final Exam Version A

Fall 2019

Section 505

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-11	/55	13	/10
12	/15	14	/25
		Total	/105

- **1**. A triangle has vertices A = (3,2,1), B = (3,3,2) and C = (4,4,2). Find the angle at A.
 - **a**. 90°
 - **b**. 60°
 - **c**. 45°
 - **d**. 30°
 - **e**. 0°

- **2**. Find the area of the triangle with vertices A = (3,2,1), B = (3,3,2) and C = (4,4,2).
 - **a**. $\frac{\sqrt{3}}{2}$
 - **b**. $\sqrt{3}$
 - **c**. $\frac{\sqrt{6}}{2}$
 - d. $\sqrt{6}$
 - **e**. $2\sqrt{6}$

- **3**. Find the arc length of the curve $\vec{r}(t) = (t^2, 2t, \ln t)$ between (1, 2, 0) and $(e^2, 2e, 1)$.
 - **a**. $e^2 + 1$
 - **b**. $e^2 1$
 - **c**. e^2
 - **d**. $\sqrt{e^2 + 1}$
 - **e**. $\sqrt{e^2 + 1} 1$

- **4.** Find the average value of the function f(x,y,z) = x along the curve $\vec{r}(t) = (t^2, 2t, \ln t)$ between (1,2,0) and $(e^2, 2e, 1)$.
 - **a**. $\frac{e^2}{2} + \frac{1}{2} \frac{1}{e^2}$
 - **b**. $\frac{e^4}{2} + \frac{e^2}{2} 1$
 - **c**. $\frac{e^2}{2} \frac{1}{2} \frac{1}{e^2}$
 - **d**. $\frac{e^4}{2} \frac{e^2}{2} 1$
 - **e**. $\frac{e^2}{2} \frac{1}{e^2}$

- **5**. Find the plane tangent to $x \sin y + 2z \cos y = 2$ at $(x,y,z) = \left(\sqrt{2}, \frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$. The z-intercept is:
 - **a**. 0
 - **b**. $\frac{1}{2\sqrt{2}}$
 - **c**. $\frac{1}{\sqrt{2}}$
 - **d**. $\sqrt{2}$
 - **e**. 2

6. The velocity field of the water in a sink is $\vec{V} = \langle -x^2y, xy^2 \rangle$ Find the circulation of the water, $Circ = \oint \vec{V} \cdot d\vec{s}$, counterclockwise around the circle $x^2 + y^2 = 4$.

HINT: Use Green's Theorem.

- **a**. 64π
- **b**. 32π
- **c**. 8π
- **d**. $\frac{16}{3}\pi$
- **e**. 2π

- 7. Compute $\int \vec{F} \cdot d\vec{s}$ for $\vec{F} = \langle 4x^3, 3y^2, 2z \rangle$ along the curve $\vec{r}(t) = \left(t \sin\left(\frac{\pi}{2}t\right), 2^t \cos\left(\frac{\pi}{2}t\right), 2^t \sin\left(\frac{\pi}{2}t\right)\right)$ from t = 0 to t = 1. HINT: Find a scalar potential.
 - **a**. 4
 - **b**. 3
 - **c**. 2
 - **d**. 1
 - $\mathbf{e}. \ 0$

- **8**. Compute $\iint_S \vec{\nabla} \times \vec{G} \cdot d\vec{S}$ for $\vec{G} = \langle y, -x, z \rangle$ over the surface $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 16 r^4)$ for $0 \le r \le 2$ and $0 \le \theta \le 2\pi$ oriented up and out. HINT: Use a theorem.
 - **a**. 4π
 - **b**. 2π
 - **c**. -2π
 - d. -4π
 - **e**. -8π

- **9**. Find the centroid of the solid hemisphere $0 \le z \le \sqrt{4 x^2 y^2}$.
 - **a**. $(0,0,2\pi)$
 - **b**. $(0,0,4\pi)$
 - **c**. $\left(0, 0, \frac{3}{4}\right)$
 - **d**. $\left(0, 0, \frac{4}{3}\right)$
 - **e**. $\left(0, 0, \frac{1}{2}\right)$

- **10**. Find the area of the surface $\vec{R}(u,v) = (u,v,u+v)$ for $0 \le u \le 2$ and $0 \le v \le 3$.
 - **a**. $3\sqrt{2}$
 - **b**. $6\sqrt{3}$
 - **c**. $6\sqrt{2}$
 - **d**. $12\sqrt{3}$
 - **e**. $12\sqrt{2}$

- **11**. Find the flux of $\vec{F} = \langle y, -z, x \rangle$ upward thru the surface $\vec{R}(u, v) = (u, v, u + v)$ for $0 \le u \le 2$ and $0 \le v \le 3$.
 - **a**. 0
 - **b**. 12
 - **c**. 18
 - **d**. 24
 - **e**. 30

12. (15 points) The Ideal Gas Law says the Pressure, P, Density, δ , and Temperature, T, are related by $P = k\delta T$ for some constant k. We will assume the atmosphere is an ideal gas with k=2. A weather baloon measures the Density and Temperature to be

$$\delta = 0.1 \frac{\text{gm}}{\text{m}^3} \qquad T = 270^{\circ} \text{K}$$

and their gradients to be

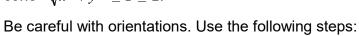
$$\vec{\nabla}\delta = \langle 0.03, 0.02, 0.01 \rangle$$
 $\vec{\nabla}T = \langle -1, 1, 3 \rangle$

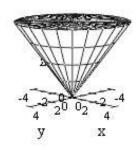
Find the gradient of the Pressure.

13. (10 points) Find the largest value of $f = xy^2z^3$ on the plane 6x + 3y + 2z = 72.

14. (25 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\Delta V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (xz, yz, 3z\sqrt{x^2 + y^2})$ and the solid cone $\sqrt{x^2 + y^2} \le z \le 2$.





First the Left Hand Side:

a. Compute the divergence:

$$\vec{\nabla} \cdot \vec{F} =$$

b. Express the divergence and the volume element in the appropriate coordinate system:

$$\vec{\nabla} \cdot \vec{F} =$$

$$dV =$$

c. Compute the left hand side:

$$\iiint\limits_{V} \overrightarrow{\nabla} \cdot \overrightarrow{F} \, dV =$$

Second the Right Hand Side:

The boundary surface consists of a hemisphere H and a disk D with appropriate orientations.

The disk *D* may be parametrized as: $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 2)$

d. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

e. Compute the normal vector:

$$\vec{N} =$$

f. Evaluate $\vec{F} = (xz, yz, 3z\sqrt{x^2 + y^2})$ on the disk:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

g. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

h. Compute the flux through *D*:

$$\iint\limits_{D} \vec{F} \cdot d\vec{S} =$$

The cone C may be parametrized as: $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

i. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

j. Compute the normal vector:

$$\vec{N} =$$

k. Evaluate $\vec{F} = \left(xz, yz, 3z\sqrt{x^2 + y^2}\right)$ on the cone:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

I. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

 \mathbf{m} . Compute the flux through C:

$$\iint_{C} \vec{F} \cdot d\vec{S} =$$

 $\boldsymbol{n}.$ Compute the \boldsymbol{TOTAL} right hand side: