UIN_____ Name_

MATH 221

Exam 1

Fall 2021

Sections 504/505

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

- 1-10 /50 12 /10 11 13 /10 /35 Total /105
- **1**. A point is given in cylindrical coordinates by $(r, \theta, z) = (3, \frac{\pi}{3}, 3)$. Find its spherical coordinates.

$$(\rho, \varphi, \theta) = (\underline{\hspace{1cm}}, \underline{\hspace{1cm}}, \underline{\hspace{1cm}})$$

2. A sphere is centered at (1,3,5) and is tangent to the plane y=1. What is the equation of the sphere?

a.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 0$$

b. $(x-1)^2 + (y-3)^2 + (z-5)^2 = 1$

f.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 5$$

b.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 1$$

g.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 6$$

c.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 2$$

c.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 2$$
 h. $(x-1)^2 + (y-3)^2 + (z-5)^2 = 7$

d.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 3$$

i.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 8$$

e.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 4$$

j.
$$(x-1)^2 + (y-3)^2 + (z-5)^2 = 9$$

This is the contour plot of which function?

a.
$$f(x,y) = y - \frac{x^2}{4}$$

b.
$$f(x,y) = y + \frac{x^2}{4}$$

c.
$$f(x,y) = x - \frac{y^2}{4}$$

d.
$$f(x,y) = x + \frac{y^2}{4}$$

4. Write $\langle 5,5,5 \rangle$ as a linear combination of $\langle 3,-1,2 \rangle$ and $\langle 1,3,2 \rangle$ or type "impossible" in both boxes.

$$\langle 5,5,5 \rangle = \underline{\hspace{1cm}} \langle 3,-1,2 \rangle + \underline{\hspace{1cm}} \langle 1,3,2 \rangle$$

- **5**. Find the angle between the vectors (2,-2,1) and (1,-4,-1).
 - a. 0°

f. 120°

b. 30°

g. 135°

c. 45°

h. 150°

 $d.~60^{\circ}$

i. 180°

e. 90°

6. Write $\vec{v} = \langle 2, -8, -2 \rangle$ as the sum of two vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{u} = \langle 2, -2, 1 \rangle$ and \vec{q} is perpendicular to \vec{u} .

$$\vec{v} = \langle 2, -8, -2 \rangle = \vec{p} + \vec{q}$$

where

 $\vec{p} = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$ and $\vec{q} = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$

- **7**. If \vec{a} points DOWN and \vec{b} points SOUTHWEST, in what direction does $\vec{a} \times \vec{b}$ point?
 - a. NORTH
- f. NORTHEAST
- **b**. SOUTH
- g. NORTHWEST

c. EAST

- h. SOUTHEAST
- d. WEST
- i. SOUTHWEST
- e. DOWN
- j. UP
- 8. Find the volume of the parallelepiped with edge vectors

$$\vec{p} = \langle 2, 1, 3 \rangle$$
 $\vec{q} = \langle 3, 2, 0 \rangle$ $\vec{r} = \langle 4, 0, 1 \rangle$ $V = \underline{\hspace{1cm}}$

9. Find the standard equation of the plane which passes through the point P = (3,2,1) and is perpendicular to the line $\vec{r}(t) = (2+t,3-2t,1+4t)$.

$$\underline{\hspace{1cm}} x + \underline{\hspace{1cm}} y + \underline{\hspace{1cm}} z = \underline{\hspace{1cm}}$$

10. Identify the surface

$$9x^2 - 36x - 4y^2 + 8y + z^2 + 4z + 36 = 0$$

a. Sphere

f. Elliptic Paraboloid

b. Ellipsoid

- **g**. Hyperbolic Paraboloid
- **c**. Hyperboloid of 1 sheet
- h. Elliptic Cylinder
- **d**. Hyperboloid of 2 sheets
- i. Hyperbolic Cylinder

e. Cone

j. Parabolic Cylinder

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (10 points) Find the point of intersection of the line

$$\frac{x+2}{2} = \frac{y+5}{3} = \frac{z+5}{4}$$

and the plane:

$$x - y + z = 4$$

(You will be graded on your work.)

12. (10 points) Consider the two planes

$$P_1: \qquad x+y+z=3$$

$$P_2: \qquad x-y+2z=1$$

Compute each of the following quantities. (You will be graded on your work.)

a. The normal vectors to the planes:

$$\vec{N}_1 = \underline{\hspace{1cm}}$$

$$\vec{N}_2 = \underline{\hspace{1cm}}$$

b. The direction of the line of intersection:

$$\vec{v} =$$

c. A point on the line of intersection:

$$P =$$

d. The equation of the line of intersection:

$$\vec{r}(t) = \underline{\hspace{1cm}}$$

- **13**. (35 points) Consider the parametric curve $\vec{r}(t) = \left(t^2, \frac{2}{3}t^3, \frac{1}{4}t^4\right)$. Compute each of the following quantities. (You will be graded on your work.)
 - **a**. Velocity $\vec{v} =$
 - **b**. Acceleration $\vec{a} =$
 - **c**. Speed $|\vec{v}| =$
 - **d**. Unit Tangent Vector $\hat{T} =$
 - e. Arc Length between A=(0,0,0) and $B=\left(4,\frac{16}{3},4\right)$ L=

f. The Scalar Line Integral of f(x,y,z) = x between A = (0,0,0) and $B = \left(4,\frac{16}{3},4\right)$ $\int_{-4}^{B} f ds =$

g. The Vector Line Integral of $\vec{F}(x,y,z) = \langle 4z, 3y, 2x \rangle$ between A = (0,0,0) and $B = \left(4, \frac{16}{3}, 4\right)$ $\int_A^B \vec{F} \cdot d\vec{s} =$