Name_

MATH 221

Exam 2

Spring 2023

Section 501

Solutions

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-9	/54	12	/14
10	/12	13	/12
11	/12	Total	/104

1. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$. Its radius is measured to be $r = 2 \pm .02$ cm and its height is measured to be $h = 6 \pm .03$ cm.

Using the linear approximation, we compute $V = 8\pi \pm \Delta V$ where $\Delta V =$

- **a**. 0.6π
- **b**. 0.4π
- **c**. 0.3π
- **d**. 0.2π Correct
- **e**. 0.1π

Solution: The linear approximation says

$$\Delta V = \frac{\partial V}{\partial r} \Delta r + \frac{\partial V}{\partial h} \Delta h = \frac{2}{3} \pi r h \Delta r + \frac{1}{3} \pi r^2 \Delta h = \frac{2}{3} \pi (2)(6)(.02) + \frac{1}{3} \pi (2)^2 (.03) = 0.2\pi$$

2. The function $f = xy + \frac{3}{x} - \frac{9}{y}$ has a critical point at (x,y) = (-1,3).

Use the Second Derivative Test to classify this critical point.

- a. Local Minimum
- b. Local Maximum Correct
- c. Inflection Point
- d. Saddle Point
- e. Test Fails

Solution:
$$f_x = y - \frac{3}{x^2}$$
 $f_y = x + \frac{9}{y^2}$

$$f_{xx} = \frac{6}{x^3}$$

$$f_{yy} = -\frac{18}{v^3}$$

$$f_{xy} = 1$$

$$f_{xx}(-1,3)=-6$$

$$f_{yy}(-1,3) = -$$

$$f_{xy}(-1,3) = 1$$

$$f_{xx} = \frac{6}{x^3} \qquad f_{yy} = -\frac{18}{y^3} \qquad f_{xy} = 1$$

$$f_{xx}(-1,3) = -6 \qquad f_{yy}(-1,3) = -\frac{2}{3} \qquad f_{xy}(-1,3) = 1 \qquad D = f_{xx}f_{yy} - f_{xy}^2 = 4 - 1 = 3$$

$$f_{xx} < 0$$

D > 0 $f_{xx} < 0$ Local Maximum

- **3**. Find the plane tangent to the graph of $z = xe^y$ at the point (3,0). Its z-intercept is
 - **a**. −*e*
 - **b**. -2
 - **c**. 0 Correct
 - **d**. 2
 - **e**. *e*

SOLUTION:

$$f = xe^y$$
 $f(3,0) = 3$ $z = f(3,0) + f_x(3,0)(x-3) + f_y(3,0)(y-0)$
 $f_x = e^y$ $f_x(3,0) = 1$ $= 3 + 1(x-3) + 3y$
 $f_y = xe^y$ $f_y(3,0) = 3$ When $x = y = 0$, we have $z = 3 + (-3) = 0$.

- **4**. Find the plane tangent to the graph of $xz^3 + zy^2 + yx^4 = 8$ at the point (1,0,2). Its z-intercept is
 - **a**. $\frac{1}{3}$
 - **b**. $\frac{2}{3}$
 - **c**. $\frac{4}{3}$
 - d. $\frac{8}{3}$ Correct
 - **e**. 32

SOLUTION:
$$F(x,y,z) = xz^3 + zy^2 + yx^4$$
 $\vec{\nabla}F = \langle z^3 + 4yx^3, 2zy + x^4, 3xz^2 + y^2 \rangle$ $\vec{N} = |\vec{\nabla}F|_{(1,0,2)} = \langle 8, 1, 12 \rangle$ $\vec{N} \cdot X = \vec{N} \cdot P$ $8x + y + 12z = 8 \cdot 1 + 1 \cdot 0 + 12 \cdot 2 = 32$

When x = y = 0, we have the *z*-intercept $z = \frac{32}{12} = \frac{8}{3}$.

5. Sidney says the Hessian of $f(x,y,z) = x \sin y + y \cos x$

$$\begin{pmatrix} f_{xx} & f_{yx} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} -y\cos x & \sin x - \cos y \\ \cos y - \sin x & -x\sin y \end{pmatrix}$$

Which entry is wrong?

a. f_{xx}

Correct **b**. f_{vx}

c. f_{xy}

d. f_{vv}

e. None of them.

Solution:
$$f_x = \frac{\partial}{\partial x}(x\sin y + y\cos x) = \sin y - y\sin x$$
 $f_y = \frac{\partial}{\partial y}(x\sin y + y\cos x) = x\cos y + \cos x$ $f_{xx} = \frac{\partial^2}{\partial x^2}(x\sin y + y\cos x) = -y\cos x$ $f_{yx} = \frac{\partial^2}{\partial x\partial y}(x\sin y + y\cos x) = \cos y - \sin x$ $f_{xy} = \frac{\partial^2}{\partial y\partial x}(\cos y + y\cos x) = \cos y - \sin x$ $f_{yy} = \frac{\partial^2}{\partial y^2}(x\sin y + y\cos x) = -x\sin y$

So f_{yx} is wrong. You should have known it was either f_{yx} or f_{xy} because they have to be equal.

6. If $\vec{F} = (yz, -xz, z^2)$, compute $\vec{F} \cdot \vec{\nabla} \times \vec{F}$.

a.
$$-2z^3$$
 Correct

b.
$$z^3$$

c.
$$z^3 + xyz$$

d.
$$-2z^3 + 2xyz$$

e. 0

Solution:
$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ yz & -xz & z^2 \end{vmatrix} = \hat{\imath}(x) - \hat{\jmath}(-y) + \hat{k}(-z - z) = (x, y, -2z)$$

$$\vec{F} \cdot \vec{\nabla} \times \vec{F} = yzx - xzy - z^22z = -2z^3$$

$$\vec{F} \cdot \vec{\nabla} \times \vec{F} = yzx - xzy - z^2 2z = -2z^3$$

7. Find the point (x,y) at which the divergence of $\vec{F} = \langle 6x^2 - xy^2, -y^2 - 2x^2y \rangle$ is a maximum.

b.
$$(-3,1)$$

c.
$$(-3,-1)$$

d.
$$(3,-1)$$
 Correct

e.
$$(0,0)$$

Solution: The divergence is $D = \vec{\nabla} \cdot \vec{F} = 12x - y^2 - 2y - 2x^2$.

To find its maximum, we set its derivatives equal to 0 and solve:

$$D_x = 12 - 4x = 0$$
 $x = 3$ $D_y = -2y - 2 = 0$ $y = -1$

The point is (x,y) = (3,-1). It has to be a maximum because D is a parabola opening down.

- 8. Find the mass of a wire in the shape of the semi-circle $\vec{r}(\theta) = (4\cos\theta, 4\sin\theta)$ for $0 \le \theta \le \pi$ if the linear density is $\delta = y$.
 - **a**. 2π
 - **b**. 8π
 - **c**. 8
 - **d**. 16
 - e. 32 Correct

Solution: The tangent vector is $\vec{v} = (-4\sin\theta, 4\cos\theta)$ and its length is $|\vec{v}| = \sqrt{16\sin^2\theta + 16\cos^2\theta} = 4$.

The density along the curve is $\delta(\vec{r}(t)) = y = 4\sin\theta$. So the mass is:

$$M = \int_0^{\pi} \delta \, ds = \int_0^{\pi} \delta(\vec{r}(t)) |\vec{v}| \, d\theta = \int_0^{\pi} 4 \sin \theta \, 4 \, d\theta = \left[-16 \cos \theta \right]_0^{\pi} = 16 - -16 = 32.$$

- **9**. A bead is pushed along a wire in the shape of the twisted cubic $\vec{r}(t) = (t^3, t^2, t)$ by the force $\vec{F} = \langle z^3, yz^2, xz^2 \rangle$ from (1,1,1) to (8,4,2). Find the work done.
 - **a**. 186
 - **b**. $\frac{384}{7}$
 - **c**. $\frac{381}{7}$
 - d. 63 Correct
 - **e**. 64

Solution:
$$\vec{v} = \langle 3t^2, 2t, 1 \rangle$$
 $\vec{F}(\vec{r}(t)) = \langle t^3, t^4, t^5 \rangle$ $\vec{F} \cdot \vec{v} = 3t^5 + 2t^5 + t^5 = 6t^5$ $W = \int \vec{F} \cdot d\vec{s} = \int_1^2 \vec{F} \cdot \vec{v} dt = \int_1^2 6t^5 dt = [t^6]_1^2 = 64 - 1 = 63$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (12 points) Find the point P = (x, y, z) on the plane x + y - z = 2 which is closest to the point Q = (1,0,2). Find the distance from P to Q.

Solution: Minimize the distance $D = \sqrt{(x-1)^2 + y^2 + (z-2)^2}$ or its square:

$$f = D^2 = (x-1)^2 + y^2 + (z-2)^2$$
 subject to the constraint $z = x + y - 2$.

So
$$f = (x-1)^2 + y^2 + (x+y-4)^2$$

$$f_x = 2(x-1) + 2(x+y-4) = 0$$
 \Rightarrow $4x + 2y - 10 = 0$ \Rightarrow $2x + y = 5$ (a)

$$f_y = 2y + 2(x + y - 4) = 0$$
 \Rightarrow $2x + 4y - 8 = 0$ \Rightarrow $x + 2y = 4$ (b)
(a)-2*(b): $-3y = -3$ \Rightarrow $y = 1$ \Rightarrow $x = 2$ \Rightarrow $z = 1$

(a)-2*(b):
$$-3y = -3$$
 \Rightarrow $y = 1$ \Rightarrow $x = 2$ \Rightarrow $z = 1$

$$P = (2, 1, 1)$$

$$D = \sqrt{(2-1)^2 + 1^2 + (1-2)^2} = \sqrt{3}$$

11. (12 points) As Duke Skywater flies the Centurion Eagle through the galaxy he wants to maximize the Power of the Force which is given by $F = \frac{1}{D}$ where D is the dark matter density given by $D = x^3 + y^3 + z^3$. If his current position is $\vec{r} = (2,1,1)$ and his current velocity is $\vec{v} = (0.5,-0.2,-0.8)$, what is the current rate of change of the Power of the Force, $\frac{dF}{dt}$? (Plug in numbers but you don't need to simplify.)

Solution: The position says x = 2, y = 1, z = 1.

The velocity says
$$\frac{dx}{dt} = 0.5$$
, $\frac{dy}{dt} = -0.2$, $\frac{dz}{dt} = -0.8$.

Currently,
$$D = x^3 + y^3 + z^3 = 2^3 + 1^3 + 1^3 = 10$$
.

We use the chain rule twice:

$$\frac{dF}{dt} = \frac{dF}{dD}\frac{dD}{dt} = \frac{dF}{dD}\left(\frac{\partial D}{\partial x}\frac{dx}{dt} + \frac{\partial D}{\partial y}\frac{dy}{dt} + \frac{\partial D}{\partial z}\frac{dz}{dt}\right) = \frac{-1}{D^2}\left(3x^2\frac{dx}{dt} + 3y^2\frac{dy}{dt} + 3z^2\frac{dz}{dt}\right)$$

$$= \frac{-1}{10^2}(3\cdot 4\cdot (0.5) + 3\cdot 1\cdot (-0.2) + 3\cdot 1\cdot (-0.8)) = -\frac{3}{100} = -0.03$$

12. (14 points) Determine whether or not each of these limits exists. If it exists, find its value.

a.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y^2}{x^6+3y^3}$$

SOLUTION: Straight line approaches: y = mx

$$\lim_{\substack{y=mx\\x\to 0}} \frac{3x^2y^2}{x^6+3y^3} = \lim_{x\to 0} \frac{3x^2m^2x^2}{x^6+3m^3x^3} = \lim_{x\to 0} \frac{3m^2x}{x^3+3m^3} = \frac{0}{3m^3} = 0$$

Quadratic approaches: $y = mx^2$

$$\lim_{\substack{y=mx^2\\x\to 0}} \frac{3x^2y^2}{x^6+3y^3} = \lim_{x\to 0} \frac{3x^2m^2x^4}{x^6+3m^3x^6} = \lim_{x\to 0} \frac{3m^2}{1+3m^3} = \frac{3m^2}{1+3m^3} \neq 0 \quad \text{if } m \neq 0$$

Limit does not exist because these are different.

b.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$

SOLUTION: Switch to polar: $x = r\cos\theta$ $y = r\sin\theta$

$$\lim_{\substack{(x,y)\to(0,0)}}\frac{xy^2}{x^2+y^2}=\lim_{\substack{r\to 0\\\theta \text{ arbitrary}}}\frac{r\cos\theta\,r^2\sin^2\theta}{r^2}=\lim_{\substack{r\to 0\\\theta \text{ arbitrary}}}r\cos\theta\sin^2\theta=0$$

because $r \to 0$ while $\cos \theta \sin^2 \theta$ is bounded: $-1 \le \cos \theta \sin^2 \theta \le 1$.

13. (12 points) Find a scalar potential, f, for the vector field $\vec{F} = \langle \cos y, \sin z - x \sin y, 2z + y \cos z \rangle$. (You MUST SHOW your derivation.)

Solution: We need to find a function f(x,y,z) satisfying $\vec{\nabla} f = \vec{F} = \langle \cos y, \sin z - x \sin y, 2z + y \cos z \rangle$. Or:

(1)
$$\partial_x f = \cos y$$

(1)
$$\partial_x f = \cos y$$
 (2) $\partial_y f = \sin z - x \sin y$ (3) $\partial_z f = 2z + y \cos z$

(3)
$$\partial_z f = 2z + y \cos z$$

Equation (1) says: $f = x \cos y + g(y,z)$ Then $\partial_y f = -x \sin y + \partial_y g$.

Comparing to equation (2) says: $\partial_{\nu}g = \sin z$.

So $g = y \sin z + h(z)$ and so $f = x \cos y + y \sin z + h(z)$. Then $\partial_z f = y \cos z + h'(z)$.

Comparing to equation (3) says: h'(z) = 2z

Therefore $h = z^2 + C$ and so $f = x \cos y + y \sin z + z^2 + C$