Name_____

MATH 221 Section 501 Exam 3
Solutions

Spring 2023
P. Yasskin

1	/15	4	/20
2	/15	5	/20
3	/15	6	/20
		Total	/105

Work Out: (Points indicated. Part credit possible. Show all work.)

1. (15 points) Given the vector field $\vec{F}(x,y,z) = \langle xz^2,yz^2,z^3 \rangle$, compute the triple integral $\iiint \vec{\nabla} \cdot \vec{F} dV$ of its divergence over the solid between $y = x^2$ and y = 2x for $0 \le z \le 3$.

Solution: The curves $y = x^2$ and y = 2x intersect at x = 0, 2. Between these, $x^2 < 2x$. The divergence of \vec{F} is $\vec{\nabla} \cdot \vec{F} = z^2 + z^2 + 3z^2 = 5z^2$. So the integral is:

$$\iiint \vec{\nabla} \cdot \vec{F} dV = \int_0^2 \int_{x^2}^{2x} \int_0^3 5z^2 \, dz \, dy \, dx = \int_0^3 5z^2 \, dz \int_0^2 \int_{x^2}^{2x} 1 \, dy \, dx = \left[5 \frac{z^3}{3} \right]_0^3 \int_0^2 \left[y \right]_{x^2}^{2x} dx$$
$$= 45 \int_0^2 (2x - x^2) \, dx = 45 \left[x^2 - \frac{x^3}{3} \right]_0^2 = 45 \left(4 - \frac{8}{3} \right) = 60$$

2. (15 points) Given the function f(x,y,z) = xy + 3z compute the vector line integral $\int_A^B \vec{\nabla} f \cdot d\vec{s}$ along the twisted cubic $\vec{r}(t) = \left(t, t^2, \frac{2}{3}t^3\right)$ between $A = \left(1, 1, \frac{2}{3}\right)$ and B = (3, 9, 18).

Solution: The gradient is $\vec{\nabla} f = \langle y, x, 3 \rangle$. Along the curve, this is $\vec{\nabla} f \Big|_{\vec{r}(t)} = \langle t^2, t, 3 \rangle$.

The velocity is $\vec{v} = \langle 1, 2t, 2t^2 \rangle$. The endpoints are

$$A = \left(1, 1, \frac{2}{3}\right) = \vec{r}(1)$$
 $B = (3, 9, 18) = \vec{r}(3)$

So the line integral is:

$$\int_{A}^{B} \vec{\nabla} f \cdot d\vec{s} = \int_{1}^{3} \langle t^{2}, t, 3 \rangle \cdot \langle 1, 2t, 2t^{2} \rangle dt = \int_{1}^{3} (t^{2} + 2t^{2} + 6t^{2}) dt = \int_{1}^{3} (9t^{2}) dt = \left[3t^{3} \right]_{1}^{3} = 81 - 3 = 78$$

3. (15 points) Compute $\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx$ Hint: Change coordinates.

Solution:
$$\int_0^{\sqrt{2}} \int_x^{\sqrt{4-x^2}} e^{-x^2-y^2} dy dx = \int_{\pi/4}^{\pi/2} \int_0^2 e^{-r^2} r dr d\theta = \left[\frac{\pi}{2} - \frac{\pi}{4} \right] \left[-\frac{1}{2} e^{-r^2} \right]_0^2 = \frac{\pi}{8} (1 - e^{-4})$$

4. (20 points) Compute $\iint_D xy^2 dA$ over the diamond shaped region in the first quadrant bounded by the curves

$$x = \frac{4}{v^2}$$
 $x = \frac{9}{v^2}$ $y = \frac{2}{x}$ $y = \frac{4}{x}$

HINT: Let $u = xy^2$ and v = xy. What are $\frac{v^2}{u}$ and $\frac{u}{v}$?

Solution: Let $u = xy^2$ and v = xy. Then the boundaries are:

$$u = xy^2 = 4$$
 $u = xy^2 = 9$ $v = xy = 2$ $v = xy = 4$

Notice $\frac{v^2}{u} = \frac{x^2 y^2}{xy^2} = x$ and $\frac{u}{v} = \frac{xy^2}{xy} = y$. So the position vector is $(x,y) = \vec{R}(u,v) = \left(\frac{v^2}{u}, \frac{u}{v}\right)$.

The Jacobian determinant is

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{v^2}{u^2} & \frac{1}{v} \\ \frac{2v}{u} & -\frac{u}{v^2} \end{vmatrix} = \frac{1}{u} - \frac{2}{u} = \frac{-1}{u}$$

So the Jacobian factor is $J = \left| -\frac{1}{u} \right| = \frac{1}{u}$, and $dA = Jdu dv = \frac{1}{u} du dv$

The integrand is $xy^2 = \frac{v^2}{u} (\frac{u}{v})^2 = u$. So the integral is

$$\iint_D xy^2 dA = \int_2^4 \int_4^9 u \, \frac{1}{u} \, du \, dv = \int_2^4 \int_4^9 1 \, du \, dv = \left[v \right]_2^4 \left[u \right]_4^9 = (2)(5) = 10$$

- **5**. (20 points) Consider the solid cylinder $x^2 + y^2 \le 4$ for $2 \le z \le 6$ with density is $\delta = (x^2 + y^2)z$.
 - a. Find the mass of the cylinder.

Solution: In cylindrical coordinates, the density is $\delta = r^2 z$. So the mass is:

$$M = \iiint_C \delta \, dV = \int_2^6 \int_0^{2\pi} \int_0^2 r^2 z r \, dr \, d\theta \, dz = \left[\frac{z^2}{2} \right]_2^6 [2\pi] \left[\frac{r^4}{4} \right]_0^2 = \frac{36 - 4}{2} (2\pi)(4) = 128\pi$$

b. Find the center of mass of the cylinder.

Solution: By symmetry, $\bar{x} = \bar{y} = 0$. The *z*-moment is:

$$M_z = \iiint_C z \delta \, dV = \int_2^6 \int_0^{2\pi} \int_0^2 z r^2 z r \, dr \, d\theta \, dz = \left[\frac{z^3}{3} \right]_2^6 [2\pi] \left[\frac{r^4}{4} \right]_0^2 = \frac{216 - 8}{3} (2\pi)(4) = \frac{1664}{3} \pi$$

So the z component of the center of mass is $\bar{z} = \frac{M_z}{M} = \frac{1664\pi}{3} \frac{1}{128\pi} = \frac{13}{3}$

6. (20 points) Given the vector field $\vec{F}(x,y,z) = \langle yz^2, -xz^2, z^3 \rangle$ compute the vector surface integral $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ along the side surface of the cylinder $x^2 + y^2 = 4$ for $2 \le z \le 6$, oriented outward. (There are no ends on the cylinder.) Parametrize the cylinder by $\vec{R}(z,\theta) = (2\cos\theta, 2\sin\theta, z)$.

Solution: The tangent vectors and normal vector to the surface are:

$$\hat{i} \qquad \hat{j} \qquad \hat{k}$$

$$\vec{e}_z = \langle 0, 0, 1 \rangle$$

$$\vec{e}_\theta = \langle -2\sin\theta, 2\cos\theta, 0 \rangle$$

$$\vec{N} = \langle -2\cos\theta, -2\sin\theta, 0 \rangle$$

To have \vec{N} oriented outward, we reverse it:

$$\vec{N} = \langle 2\cos\theta, 2\sin\theta, 0 \rangle.$$

The curl of \vec{F} is:

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \partial_x & \partial_y & \partial_z \\ yz^2 & -xz^2 & z^3 \end{vmatrix}$$

$$= \hat{i}(2xz) - \hat{j}(-2yz) + \hat{k}(-z^2 - z^2)$$

$$= \langle 2xz, 2yz, -2z^2 \rangle$$

On the surface, this is:

$$\left[\vec{\nabla} \times \vec{F}\right]_{\vec{R}(\theta,z)} = \langle 4z\cos\theta, 4z\sin\theta, -2z^2 \rangle$$

The necessary dot product is:

$$\vec{\nabla} \times \vec{F} \cdot \vec{N} = 8z \cos^2 \theta + 8z \sin^2 \theta + 0 = 8z$$

So the surface integral is:

$$\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \int_{2}^{6} \int_{0}^{2\pi} \vec{\nabla} \times \vec{F} \cdot \vec{N} d\theta dz = \int_{2}^{6} \int_{0}^{2\pi} 8z d\theta dz = 2\pi \left[4z^{2} \right]_{2}^{6} = 8\pi (36 - 4) = 256\pi$$