Name \qquad
MATH 221
Exam 1, Version B
Section: \qquad
Fall 2023
502,503
Solutions
P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1. Find the sphere which is tangent to the z-axis whose center is $(4,3,2)$.
a. $(x-4)^{2}+(y-3)^{2}+(z-2)^{2}=4$
b. $(x-4)^{2}+(y+3)^{2}+(z-2)^{2}=25$
c. $(x-4)^{2}+(y-3)^{2}+(z-2)^{2}=25 \quad$ Correct
d. $(x+4)^{2}+(y+3)^{2}+(z+2)^{2}=4$
e. $(x+4)^{2}+(y+3)^{2}+(z+2)^{2}=25$

Solution: The equation of a sphere is $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=R^{2}$ where the center is $(a, b, c)=(4,3,2)$ and the radius is the distance from the center to the z-axis which is $R=\sqrt{4^{2}+3^{2}}=5$.
2. Which of the following is the plot of the polar curve $r=4 \cos \theta-2$?
a.

b.

c.

d.

Correct

Solution: $r(0)=4(1)-2=2 \quad$ (measured right since θ is right)

$$
r(\pi)=4(-1)-2=-6 \quad(\text { measured right since } \theta \text { is left and } r<0) .
$$

3. The plot at the right is the contour plot of which function?
a. $z=(x-2)^{2}+(y-3)^{2}$
b. $z=(x-2)^{2}-(y-3)^{2}$

Correct
c. $z=(x-3)^{2}+(y-2)^{2}$
d. $z=(x-3)^{2}-(y-2)^{2}$

Solution: The plot is centered at (2,3). So the function is $z= \pm(x-2)^{2} \pm(y-3)^{2}$.
Since the contours are hyperbolas, not circles, the function is $z=(x-2)^{2}-(y-3)^{2}$.
4. The force $\vec{F}=\langle 7,-3\rangle$ pushes a mass from $P=(12,1)$ to $Q=(7,-1)$.

Find the angle between the force and the displacement.
a. 135° Correct
b. 120°
c. 60°
d. 45°
e. 30°

Solution: The displacement is $\vec{D}=Q-P=\langle-5,-2\rangle$. So the angle satisfies:
$\cos \theta=\frac{\vec{F} \cdot \vec{D}}{|\vec{F}||\vec{D}|}=\frac{-35+6}{\sqrt{25+4} \sqrt{49+9}}=\frac{-29}{\sqrt{29} \sqrt{58}}=\frac{-1}{\sqrt{2}} \quad \theta=135^{\circ}$
5. Do the vectors $\vec{u}=\langle 2,0,1\rangle, \vec{v}=\langle 0,-1,3\rangle$ and $\vec{w}=\langle 3,2,0\rangle$ form a left or right handed triplet? Then find the volume of the parallelepiped with these edges.
a. left handed $\quad V=3$
b. left handed $\quad V=9$ Correct
c. left handed $\quad V=-9$
d. right handed $\quad V=3$
e. right handed $\quad V=-9$

Solution: $\vec{u} \cdot \vec{v} \times \vec{w}=\left|\begin{array}{ccc}2 & 0 & 1 \\ 0 & -1 & 3 \\ 3 & 2 & 0\end{array}\right|=2\left|\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right|+1\left|\begin{array}{cc}0 & -1 \\ 3 & 2\end{array}\right|=2(-6)+1(3)=-12+3=-9$
Since this is negative, the triplet is left handed. The volume is $V=|\vec{u} \cdot \vec{v} \times \vec{w}|=9$
6. Find an equation of the plane through the point $P=(3,2,1)$ which is perpendicular to the line $(x, y, z)=(1+4 t, 2+3 t, 3+2 t)$.
Then find where the plane passes through the z-axis.
a. $z=2$
b. $z=4$
c. $z=5$
d. $z=10 \quad$ Correct
e. $z=20$

Solution: The normal to the plane is the direction of the line, $\vec{N}=\vec{v}=\langle 4,3,2\rangle$. The point is given.
So the plane is $\vec{N} \cdot X=\vec{N} \cdot P$ or $4 x+3 y+2 z=4 \cdot 3+3 \cdot 2+2 \cdot 1=20$.
The line intersects the z-axis when $x=y=0$ or $2 z=20$. So $z=10$
7. Classify the quadratic curve: $x^{2}-6 x=2 y^{2}-4 y-7$.
a. parabola opening in the x direction
b. parabola opening in the y direction
c. hyperbola opening up and down
d. hyperbola opening left and right
e. cross Correct

Solution: We take everything to one side of the equation and then complete the squares:

$$
\begin{aligned}
x^{2}-6 x-2 y^{2}+4 y & =-7 \\
\left(x^{2}-6 x\right)-2\left(y^{2}-2 y\right) & =-7 \\
\left(x^{2}-6 x+9\right)-2\left(y^{2}-2 y+1\right) & =-7+9-2 \\
(x-3)^{2}-2(y-1)^{2} & =0
\end{aligned}
$$

Since the x and y terms are quadratic with opposite signs and the right side is 0 , the curve is a cross.
8. Your drone flies NorthEast $5 \sqrt{2} \mathrm{~km}$ and then East 7 km . If it flies home along a straight line, how far does it need to fly to get home?
a. 11 km
b. 12 km
c. $7+5 \sqrt{2} \mathrm{~km}$
d. 13 km Correct
e. 17 km

Solution: The first vector is $\vec{u}=\langle 5,5\rangle$. The second vector is $\vec{v}=\langle 7,0\rangle$.
The flight home is the vector $\vec{w}=-\vec{u}-\vec{v}=\langle-12,5\rangle$. The distance home is $|\vec{w}|=\sqrt{12^{2}+5^{2}}=13 \mathrm{~km}$.
9. Find the circulation in a bowl of water, counterclockwise around the circle $x^{2}+y^{2}=16$, with $z=3$, if its fluid velocity field is $\vec{V}=\langle x-y, x+y, 2 z\rangle$.
a. 2π
b. 4π
c. 8π
d. 16π
e. 32π Correct

Solution: The circle may be parametrized by $\vec{r}(t)=(4 \cos t, 4 \sin t, 3)$.
Its tangent vector is $\vec{v}=\langle-4 \sin t, 4 \cos t, 0\rangle$. The fluid velocity on the curve is
$\vec{V} \vec{r}(t))=\langle 4 \cos t-4 \sin t, 4 \cos t+4 \sin t, 6\rangle$.
The dot product of the fluid velocity and the tangent vector is
$\vec{V}(\vec{r}(t)) \cdot \vec{v}=-4 \sin t(4 \cos t-4 \sin t)+4 \cos t(4 \cos t+4 \sin t)+0=16 \sin ^{2} t+16 \cos ^{2} t=16$
So the circulation is
Circ $=\oint \vec{V} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{V}(\vec{r}(t)) \cdot \vec{v} d t=\int_{0}^{2 \pi} 16 d t=[16 t]_{0}^{2 \pi}=32 \pi$

Work Out: (Points indicated. Part credit possible. Show all work.)

10. (20 pts) Consider the twisted cubic $\vec{r}=\left(t^{3}, 3 t^{2}, 6 t\right)$. Compute each of the following.

Note: $\quad t^{4}+4 t^{2}+4=\left(t^{2}+2\right)^{2}$
a. (6 pts) Arc length between $(0,0,0)$ and $(1,3,6)$.

Solution: $\vec{v}=\left\langle 3 t^{2}, 6 t, 6\right\rangle \quad|\vec{v}|=\sqrt{9 t^{4}+36 t^{2}+36}=3 \sqrt{t^{4}+4 t^{2}+4}=3 \sqrt{\left(t^{2}+2\right)^{2}}=3\left(t^{2}+2\right)$
$L=\int_{0}^{1}|\vec{v}| d t=\int_{0}^{1} 3\left(t^{2}+2\right) d t=3\left[\frac{t^{3}}{3}+2 t\right]_{0}^{1}=3\left[\frac{1}{3}+2\right]=7$
b. (6 pts) Curvature $\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}$.

HINT: Factor out an 18^{2}.
Solution: $\vec{a}=\langle 6 t, 6,0\rangle \quad \vec{v} \times \vec{a}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 3 t^{2} & 6 t & 6 \\ 6 t & 6 & 0\end{array}\right|=\left\langle-36,36 t, 18 t^{2}-36 t^{2}\right\rangle=\left\langle-36,36 t,-18 t^{2}\right\rangle$
$|\vec{v} \times \vec{a}|=\sqrt{36^{2}+36^{2} t^{2}+18^{2} t^{4}}=18 \sqrt{4+4 t^{2}+t^{4}}=18 \sqrt{\left(t^{2}+2\right)^{2}}=18\left(t^{2}+2\right)$
$\kappa=\frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^{3}}=\frac{18\left(t^{2}+2\right)}{3^{3}\left(t^{2}+2\right)^{3}}=\frac{2}{3\left(t^{2}+2\right)^{2}}$
c. (4 pts) Tangential acceleration, a_{T}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{T}=\frac{d}{d t}|\vec{v}|=\frac{d}{d t} 3\left(t^{2}+2\right)=6 t$
d. (4 pts) Normal acceleration, a_{N}.

HINT: You do NOT need to compute \hat{T}, \hat{N} or \hat{B}.
Solution: $\quad a_{n}=\kappa|\vec{v}|^{2}=\frac{2}{3\left(t^{2}+2\right)^{2}} 3^{2}\left(t^{2}+2\right)^{2}=6$
11. (10 pts) Find the average value of the function $f(x, y, z)=x^{2}$ on the helix $\vec{r}(t)=(3 \cos t, 3 \sin t, 4 t)$ for $0 \leq t \leq 2 \pi$.

Solution: The velocity is $\vec{v}=\langle-3 \sin t, 3 \cos t, 4\rangle$. The speed is $|\vec{v}|=\sqrt{9 \sin ^{2} t+9 \cos ^{2} t+16}=5$.
The length of the curve is $L=\int_{0}^{2 \pi}|\vec{v}| d t=\int_{0}^{2 \pi} 5 d t=[5 t]_{0}^{2 \pi}=10 \pi$. The integral of f is $\int f d s=\int_{0}^{2 \pi} x^{2}|\vec{v}| d t=\int_{0}^{2 \pi} 9 \cos ^{2} t 5 d t=45 \int_{0}^{2 \pi} \frac{1+\cos (2 t)}{2} d t=\frac{45}{2}\left[t+\frac{\sin (2 t)}{2}\right]_{0}^{2 \pi}=\frac{45}{2} 2 \pi=45 \pi$ So the average value is $f_{\text {ave }}=\frac{1}{L} \int f d s=\frac{1}{10 \pi} 45 \pi=\frac{9}{2}$.
12. (10 pts) Write the vector $\vec{a}=\langle 5,5\rangle$ as the sum of vectors \vec{p} and \vec{q} where \vec{p} is parallel to $\vec{b}=\langle 3,1\rangle$ and \vec{q} is perpendicular to \vec{b}.

Solution:

$\vec{p}=\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^{2}} \vec{b}=\frac{15+5}{9+1}\langle 3,1\rangle=2\langle 3,1\rangle=\langle 6,2\rangle \quad \vec{q}=\vec{a}-\vec{p}=\langle 5,5\rangle-\langle 6,2\rangle=\langle-1,3\rangle$
Check: $\quad \vec{p}+\vec{q}=\langle 6,2\rangle+\langle-1,3\rangle=\langle 5,5\rangle \quad \vec{q} \cdot \vec{b}=\langle-1,3\rangle \cdot\langle 3,1\rangle=0$
13. (10 pts) Consider the 2 planes:

$$
\begin{array}{ll}
P_{1}: & 2 x+y+3 z=8 \\
P_{2}: & x+2 y-2 z=7
\end{array}
$$

Determine if they are parallel or intersecting. If they intersect, find a parametric equation for the line of intersection.
You MUST show why they are or are not parallel.
Solution: The normal vectors are $\vec{N}_{1}=\langle 2,1,3\rangle$ and $\vec{N}_{2}=\langle 1,2,-2\rangle$.
Since these are not proportional, the planes are not parallel.
The direction of the line of intersection is

$$
\vec{v}=\vec{N}_{1} \times \vec{N}_{2}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 1 & 3 \\
1 & 2 & -2
\end{array}\right|=\hat{\imath}(-8)-\hat{\jmath}(-7)+\hat{k}(3)=\langle-8,7,3\rangle
$$

To find a point on the line of intersection, we pick $z=0$ and solve

$$
\begin{aligned}
& 2 x+y=8 \\
& x+2 y=7
\end{aligned}
$$

The first equation minus twice the second gives: $y-4 y=8-14$ or $-3 y=-6$ or $y=2$.
Then the second equation says $x=7-2 y=7-2(2)=3$. So a point is $P=(3,2,0)$.
So the line is $(x, y, z)=P+\overrightarrow{t v}=(3,2,0)+t\langle-8,7,3\rangle=(3-8 t, 2+7 t, 3 t)$.

