Name_____ Section:____

MATH 221 Exam 3, Version C

Fall 2023

502,503

P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-8	/48	10	/16
9	/16	11	/24
		Total	/104

- **1**. Find the divergence of the vector field $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$ and evaluate the divergence at P = (1, 2, 3).
 - **a**. −2
 - **b**. 20
 - **c**. 22
 - **d**. 23
 - **e**. 24
- **2**. Find the curl of the vector field $\vec{F} = \langle x^2y, y^2z, z^2x \rangle$ and evaluate the curl at P = (1, 2, 3).
 - **a**. $\langle -4, -9, -1 \rangle$
 - **b**. $\langle -4, 9, -1 \rangle$
 - **c**. $\langle 2, -12, 9 \rangle$
 - **d**. $\langle 2, 12, 9 \rangle$
 - **e**. (1,-4,9)
- **3**. Let f be a scalar potential for $\vec{F} = \langle yz + 2x, xz + 2y, xy + 2z \rangle$. Compute f(1,2,3) f(0,0,0). (Note: The subtraction cancels off the arbitrary constant.)
 - **a**. -2
 - **b**. 20
 - **c**. 22
 - **d**. 23
 - **e**. 24

- **4**. Use a Riemann sum with 6 squares evaluated at the center of each square to estimate the volume of the solid over the rectangle $[1,7] \times [2,6]$ below the surface $f = x^2 + y^2$.
 - **a**. 130
 - **b**. 214
 - **c**. 520
 - **d**. 856
 - **e**. 872

5. Find the area inside the heart which in polar coordinates is the spiral $|r| = |\theta|$ for $-\pi \le \theta \le \pi$. HINT Double the area inside half the spiral.

- a. $\frac{\pi^3}{6}$ b. $\frac{\pi^3}{3}$ c. $\frac{\pi^3}{2}$ d. $\frac{\pi^4}{4}$ e. $\frac{\pi^4}{2}$

6. Find mass of the solid below $z = 25 - x^2 - y^2$ above the *xy*-plane inside the cylinder $x^2 + y^2 = 9$ if the volume density is $\delta = z$.

b.
$$\frac{\pi}{6}(25^3 + 16^3)$$

c.
$$\pi \left(25^2 \cdot 3 - 50 \cdot 3^2 + \frac{3^5}{5} \right)$$

d.
$$\pi \left(25^2 \cdot 3 + 50 \cdot 3^2 + \frac{3^5}{5}\right)$$

e.
$$\pi \left(25\frac{3^2}{2} - \frac{3^4}{4}\right)$$

$$(x,y,z) = \vec{R}(u,v,w) = (vw,uw,uv)$$
 with $u > 0$, $v > 0$, $w > 0$

- **a**. *uvw*
- **b**. 2*uvw*
- **c**. u + v + w
- **d**. 2u + 2v + 2w
- **e**. vw + uw + uv

8. Find the average value of the function $f = x^2 + y^2 + z^2$ on the solid hemisphere $0 \le z \le \sqrt{4 - x^2 - y^2}$.

- **a**. $\frac{5}{5}$
- **b**. $\frac{4}{5}\pi$
- **c**. $\frac{12}{5}$
- **d**. $\frac{16}{3}\pi$
- **e**. $\frac{64}{5}\pi$

Work Out: (Points indicated. Part credit possible. Show all work.)

- **9**. (16 points) Consider a plate bounded by $y = 4 x^2$ and the x-axis with surface density $\delta = x^2$.
 - a. (8 pts) Find the mass of a plate.

b. (8 pts) Find the center of mass of a plate.

10. (16 points) Compute $\iint_D x^2 dA$ over the diamond shaped region in the 1st quadrant bounded by

$$y = \frac{1}{x} \qquad y = \frac{9}{x} \qquad y = x \qquad y = \frac{1}{4}x$$

HINT: Use the curvilinear coordinates

$$x = uv$$
 $y = \frac{v}{u}$.

a. (5 pts) Find the Jacobian factor.

b. (1 pts) Express the integrand in terms of the coordinates.

c. (4 pts) Substitute x = uv and $y = \frac{v}{u}$ into the boundaries to express them in terms of uand v.

d. (6 pts) Compute the integral.

11. (24 points) Consider the cone surface $z = 2\sqrt{x^2 + y^2}$ for $z \le 6$ which may be parametrized by

$$\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, 2r \rangle$$

a. (6 pts) Find the tangent vectors:

$$\overrightarrow{e}_r =$$

$$\vec{e}_{\theta} =$$

b. (3 pts) Find the normal vector oriented down and out:

$$\vec{N} =$$

c. (2 pts) Find the length of the normal vector:

$$|\vec{N}| =$$

d. (4 pts) Find the mass of the cone if the mass density is $\delta = \sqrt{x^2 + y^2}$.

$$M =$$

e. (3 pts) Find the **curl** of the vector field $\vec{F} = \langle yz, -xz, z^2 \rangle$ in rectangular coordinates:

$$\vec{\nabla} \times \vec{F} =$$

f. (2 pts) Evaluate the **curl** of \vec{F} on the cone:

$$\vec{\nabla} \times \vec{F} \Big|_{\vec{R}} =$$

g. (4 pts) Find the flux of the **curl** of \vec{F} down and out of the cone:

$$\iint_{C} (\vec{\nabla} \times \vec{F}) \cdot d\vec{S} =$$