Name______ Section:_____

MATH 221 Final Exam, Version B

Fall 2023

502,503

Solutions

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-12	/60	14	/10
13	/10	15	/24
		Total	/104

1. Which of the following lines lies in the plane: 2x - y - z = 0?

a.
$$(x,y,z) = (1,2,3) + t(1,1,1)$$

b.
$$(x,y,z) = (3,2,1) + t(1,1,1)$$

c.
$$(x,y,z) = (2,1,3) + t(1,1,1)$$
 Correct

d.
$$(x,y,z) = (3,1,2) + t(1,1,1)$$

e.
$$(x,y,z) = (1,3,2) + t(1,1,1)$$

Solution: The starting point must be on the plane. So we set t=0 and try each point. Only (x,y,z)=(2,1,3) satisfies 2x-y-z=0

2. Find the arc length of the curve $\vec{r}(t) = (2t^2, t^3)$ between (0,0) and (2,1).

a.
$$\frac{31}{27}$$

b.
$$\frac{61}{27}$$
 Correct

c.
$$\frac{91}{27}$$

d.
$$\frac{31}{9}$$

e.
$$\frac{61}{9}$$

Solution: $\vec{v} = (4t, 3t^2)$ $|\vec{v}| = \sqrt{16t^2 + 9t^4} = t\sqrt{16 + 9t^2}$ You may need $u = 16 + 9t^2$ du = 18t dt.

$$L = \int ds = \int |\vec{v}| dt = \int_0^1 t \sqrt{16 + 9t^2} dt = \frac{1}{27} \left[(16 + 9t^2)^{3/2} \right]_0^1 = \frac{1}{27} (25^{3/2} - 16^{3/2}) = \frac{1}{27} (125 - 64) = \frac{61}{27}$$

- 3. Find the point where the line $\frac{x-4}{3} = \frac{y-4}{2} = z-4$ intersects the plane 3x + 2y + z = 10. At this point x + y + z = 10
 - **a**. 0
 - **b**. 2
 - **c**. 4
 - d. 6 Correct
 - e. They do not intersect.

Solution: We convert the line to parametric form, plug into the plane and solve for t:

$$x = 4 + 3t$$
 $y = 4 + 2t$ $z = 4 + t$ $3(4 + 3t) + 2(4 + 2t) + (4 + t) = 10$
 $24 + 14t = 10$ $14t = -14$ $t = -1$ $(x,y,z) = (4 + 3t, 4 + 2t, 4 + t) = (1,2,3)$
So $x + y + z = 6$

- **4**. Find the equation of the plane tangent to the graph of $z = 3x^2y 2y^3$ at the point (2,1). Its *z*-intercept is
 - **a**. -20 Correct
 - **b**. -14
 - **c**. 14
 - **d**. 20
 - **e**. 40

Solution:
$$f(x,y) = 3x^2y - 2y^3$$
 $f_x(x,y) = 6xy$ $f_y(x,y) = 3x^2 - 6y^2$ $f(2,1) = 3 \cdot 2^2 - 2 = 10$ $f_x(2,1) = 6 \cdot 2 = 12$ $f_y(2,1) = 3 \cdot 2^2 - 6 = 6$ $z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1) = 14 + 12(x-2) + 18(y-1)$ z -intercept $= 10 + 12(-2) + 6(-1) = -20$

- **5**. Find the equation of the line perpendicular to the graph of $x^3y^2z 2x^2z^2 = 10$ at the point (1,3,2). This line intersects the xy-plane at:
 - **a**. $\left(-\frac{19}{3}, 2, 0\right)$
 - **b**. $\left(2, \frac{19}{3}, 0\right)$
 - **c**. (-75, -21, 0) Correct
 - **d**. $\left(\frac{19}{3}, -2, 0\right)$
 - **e**. (21, -75, 0)

Solution:
$$f(x,y,z) = x^3y^2z - 2x^2z^2$$
 $\vec{\nabla}f = (3x^2y^2z - 4xz^2, 2x^3yz, x^3y^2 - 4x^2z)$
 $\vec{N} = \vec{\nabla}f(1,3,2) = \left(3(3)^2(2) - 4(2)^2, 2(3)(2), (3)^2 - 4(2)\right) = (38,12,1)$
 $X = P + t\vec{N}$ $(x,y,z) = (1,3,2) + t(38,12,1) = (1 + 38t, 3 + 12t, 2 + t)$

This line intersects the xy-plane when z=2+t=0 or t=-2 or at (x,y,z)=(-75,-21,0)

6. The volume of a cone is $V = \frac{1}{3}\pi r^2 h$.

The radius r is currently 3 cm and is increasing at 2 cm/sec.

The height h is currently 4 cm and is decreasing at 1 cm/sec.

Is the volume increasing or decreasing and at what rate?

- **a.** decreasing at 19π cm³/sec
- **b.** decreasing at 13π cm³/sec
- c. neither increasing nor decreasing
- **d.** increasing at 19π cm³/sec
- **e.** increasing at 13π cm³/sec Correct

Solution:
$$\frac{dV}{dt} = \frac{\partial V}{\partial r} \frac{dr}{dt} + \frac{\partial V}{\partial h} \frac{dh}{dt} = \frac{2}{3} \pi r h \frac{dr}{dt} + \frac{1}{3} \pi r^2 \frac{dh}{dt} = \frac{2}{3} \pi 3 \cdot 4(2) + \frac{1}{3} \pi 9(-1)$$

= $(16 - 3)\pi = 13\pi$ Since this is positive, the volume is increasing.

7. Compute the line integral $\int -y \, dx + x \, dy$ along the parabola $y = x^2$ from (1,1) to (2,4).

HINT: Parametrize the curve.

- Correct
- **b**. $\frac{5}{3}$
- **c**. $\frac{1}{3}$
- **d**. 1
- **e**. 3

Solution:
$$\vec{r}(t) = (t, t^2)$$
 for $1 \le t \le 2$. $\vec{v} = (1, 2t)$ This points right and up as needed. $\vec{F} = (-v, x) = (-t^2, t)$ $\vec{F} \cdot \vec{v} = -t^2 + 2t^2 = t^2$

$$\Gamma = (-y, x) = (-t, t) \qquad \Gamma \cdot v = -t + 2t = t$$

$$\Gamma = (-y, x) = (-t, t) \qquad \Gamma \cdot v = -t + 2t = t$$

$$\Gamma = (-y, x) = (-t, t) \qquad \Gamma \cdot v = -t + 2t = t$$

$$\int y \, dx - x \, dy = \int \vec{F} \cdot d\vec{s} = \int \vec{F} \cdot \vec{v} \, dt = \int_{1}^{2} t^{2} \, d\theta = \left[\frac{t^{3}}{3} \right]_{1}^{2} = \frac{7}{3}$$

8. Compute $\int_{\vec{r}} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (2x + y + z, 2y + x + z, 2z + x + y)$ along the curve

$$\vec{r}(t) = (t\cos t, t\sin t, te^{t/\pi})$$
 between $t = 0$ and $t = \pi$.

HINT: Find a scalar potential.

a.
$$\pi^2(1 + e^2 - e)$$
 Correct

b.
$$\pi^2(1+e^2-2e)$$

c.
$$\pi^2(1+e^2+e)$$

d.
$$\pi^2(1+e^2+2e)$$

e.
$$\pi^2(1+e^2)$$

Solution:
$$\vec{F} = \vec{\nabla} f$$
 for $f = x^2 + y^2 + z^2 + xy + xz + yz$

$$A = \vec{r}(0) = (0,0,0)$$
 $B = \vec{r}(\pi) = (-\pi, 0, \pi e)$

By the FTCC.
$$\int_{A}^{B} \vec{F} \cdot d\vec{s} = \int_{A}^{B} \vec{\nabla} f \cdot d\vec{s} = f(B) - f(A) = \pi^{2} + \pi^{2}e^{2} - \pi^{2}e = \pi^{2}(1 + e^{2} - e)$$

9. Compute
$$\oint_C \vec{F} \cdot d\vec{s}$$
 for $\vec{F} = (-x^2y + x^3 - y^3, xy^2 + x^3 - y^3)$ counterclockwise around the circle $x^2 + y^2 = 9$.

HINT: Use a theorem.

a.
$$324\pi$$

b.
$$162\pi$$
 Correct

c.
$$144\pi$$

d.
$$72\pi$$

e.
$$36\pi$$

Solution: We identify $P = -x^2v + x^3 - v^3$ and $O = xv^2 + x^3 - v^3$.

So
$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = (y^2 + 3x^2) - (-x^2 - 3y^2) = 4(x^2 + y^2) = 4r^2$$
.

By Green's Theorem:
$$\oint_C \vec{F} \cdot d\vec{s} = \iint_C \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA = \int_0^{2\pi} \int_0^3 4r^2 r dr d\theta = 2\pi [r^4]_0^3 = 162\pi$$

a.
$$\frac{\pi}{4}$$

b.
$$\frac{\pi}{2}$$

c.
$$2 - \frac{\pi}{4}$$

d.
$$2 + \frac{\pi}{4}$$
 Correct

e.
$$2 - \frac{\pi}{2}$$

11. Compute $\oint \vec{\nabla} f \cdot d\vec{s}$ counterclockwise once around the polar curve $r = 3 + \cos(4\theta)$ for the function $f(x,y) = x^2y$.

- **a**. 2π
- **b**. 4π
- \mathbf{C} . 6π
- d. 8π
- **e**. 0 Correct

Solution: For a closed curve, the starting and finishing points are the same, A = B. So by the FTCC, $\oint \vec{\nabla} f \cdot d\vec{s} = f(B) - f(A) = 0$ for any function f.

- **12**. Consider the parabolic surface P given by $z = x^2 + y^2$ for $z \le 4$ with normal pointing up and in, the disk D given by $x^2 + y^2 \le 4$ and z = 4 with normal pointing up, and the volume V between them. For a certain vector field \vec{F} we have:

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \, dV = 14 \quad \text{and} \quad \iint\limits_{D} \vec{F} \cdot d\vec{S} = 3$$

Compute $\iint_{\Gamma} \vec{F} \cdot d\vec{S}$.

- **a**. 17
- **b**. 11
- **c**. 8
- **d**. -11 Correct
- **e**. -17

Solution: By Gauss' Theorem:
$$\iiint_V \vec{\nabla} \cdot \vec{F} dV = \iint_D \vec{F} \cdot d\vec{S} - \iint_P \vec{F} \cdot d\vec{S}$$

The minus sign reverses the orientation of P to point outward. Thus

$$\iint\limits_{P} \vec{F} \cdot d\vec{S} = \iint\limits_{D} \vec{F} \cdot d\vec{S} - \iiint\limits_{V} \vec{\nabla} \cdot F dV = 3 - 14 = -11$$

Work Out: (Points shown. Part credit possible. Show all work.)

13. (10 points) Find 3 numbers a, b and c whose sum is 12 for which ab + 2ac + 3bc is a maximum.

You do not need to show it is a maximum.

Solution: We maximize f = ab + 2ac + 3bc subject to the constraint a + b + c = 12.

c = 12 - a - bSolve the constraint: Substitute into the function:

$$f = ab + 2a(12 - a - b) + 3b(12 - a - b) = 24a + 36b - 2a^2 - 4ab - 3b^2$$

Set the partial derivatives equal to zero and solve:

$$f_a = 24 - 4a - 4b = 0$$
 $4a + 4b = 24$
 $f_b = 36 - 4a - 6b = 0$ $4a + 6b = 36$

$$f_b = 36 - 4a - 6b = 0 \qquad 4a + 6b = 36$$

$$2b = 12$$
 $b = 6$ $a + b = 6$ $a = 6 - b = 0$

$$c = 12 - a - b = 12 - 0 - 6 = 6$$
 $a = 0, b = 6, c = 6$

14. (10 points) Find the mass and center of mass of the cylindrical **surface** $x^2 + y^2 = 9$ for $0 \le z \le 2$ with density $\delta = z$. The cylinder may be parametrize as $\vec{R}(\theta, z) = (3\cos\theta, 3\sin\theta, z)$.

$$\hat{i}$$
 \hat{j} \hat{k}

Solution:
$$\vec{e}_{\theta} = (-3\sin\theta, 3\cos\theta, 0)$$

$$\vec{e}_z = (0, 0, 1)$$

$$\vec{N} = \vec{e}_{\theta} \times \vec{e}_{z} = \hat{\imath}(3\cos\theta) - \hat{\jmath}(-3\sin\theta) + \hat{k}(0) = (3\cos\theta, 3\sin\theta, 0)$$

$$|\vec{N}| = \sqrt{9\cos^2\theta + 9\sin^2\theta} = 3 \qquad \rho = 1$$

$$M = \iint \delta \, dS = \iint z \, |\vec{N}| \, d\theta \, dz = \int_0^2 \int_0^{2\pi} 3z \, d\theta \, dz = 2\pi 3 \left[\frac{z^2}{2} \right]_0^2 = 12\pi$$

 $\bar{x} = \bar{y} = 0$ by symmetry.

z-mom =
$$M_z = \iint z \, \delta \, dS = \iint z^2 \left| \vec{N} \right| d\theta \, dz = \int_0^2 \int_0^{2\pi} 3z^2 \, d\theta \, dz = 2\pi 3 \left[\frac{z^3}{3} \right]_0^2 = 16\pi$$

$$\bar{z} = \frac{M_z}{M} = \frac{M_z}{M} = \frac{16\pi}{12\pi} = \frac{4}{3}$$

15. (24 points) Verify Stokes' Theorem

$$\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F}=(yz^2,-xz^2,z^3)$ and the cylinder $x^2+y^2=9$ for $1\leq z\leq 2$ oriented outward.

Be sure to check orientations. Use the following steps:

Left Hand Side: The cylindrical surface may be parametrized by $\vec{R}(\theta,z) = (3\cos\theta, 3\sin\theta, z)$.

a. Compute the normal vector and check its orientation:

Solution:
$$\hat{i} \qquad \hat{j} \qquad \hat{k}$$

$$\vec{e}_{\theta} = (-3\sin\theta, \ 3\cos\theta, \ 0)$$

$$\vec{e}_{z} = (0, \ 0, \ 1)$$

$$\vec{N} = \vec{e}_{\theta} \times \vec{e}_{z} = \hat{i}(3\cos\theta) - \hat{j}(-3\sin\theta) + \hat{k}(0) = (3\cos\theta, 3\sin\theta, 0)$$
 This correctly points outward.

b. Compute the curl of \vec{F} and evaluate it on the cylinder.

Solution:
$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz^2 & -xz^2 & z^3 \end{vmatrix} = \hat{i}(0 - 2xz) - \hat{j}(0 - 2yz) + \hat{k}(-z^2 - z^2) = (2xz, 2yz, -2z^2)$$

$$\vec{\nabla} \times \vec{F}(\vec{R}(\theta, z)) = (6z\cos\theta, 6z\sin\theta, -2z^2)$$

c. Compute the dot product of the curl of \vec{F} and the normal:

Solution:
$$\vec{\nabla} \times \vec{F} \cdot \vec{N} = 18z \cos^2 \theta + 18z \sin^2 \theta = 18z$$

d. Compute the surface integral:

Solution:
$$\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \iint_{C} \vec{\nabla} \times \vec{F} \cdot \vec{N} d\theta dz = \int_{1}^{2} \int_{0}^{2\pi} 18z d\theta dz = 2\pi [9z^{2}]_{z=1}^{2} = 54\pi$$
 (continued)

Right Hand Side: Let U be the upper circle and L be the lower circle.

 ${f e}$. Parametrize U. Find the velocity and check its orientation:

Solution: $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 2)$ $\vec{v}(\theta) = (-3\sin\theta, 3\cos\theta, 0)$ This is counterclockwise. We need clockwise. So we reverse it: $\vec{v}(\theta) = (3\sin\theta, -3\cos\theta, 0)$

f. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle and compute its dot product with the velocity:

Solution: $\vec{F}(\vec{r}(\theta)) = (12\sin\theta, -12\cos\theta, 8)$ $\vec{F} \cdot \vec{v} = 36\sin^2\theta + 36\cos^2\theta = 36$

g. Compute the line integral $\oint_U \vec{F} \cdot d\vec{s}$

Solution: $\oint_U \vec{F} \cdot d\vec{s} = \int_0^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_0^{2\pi} 36 d\theta = 72\pi$

h. Parametrize L. Find the velocity and check its orientation:

Solution: $\vec{r}(\theta) = (3\cos\theta, 3\sin\theta, 1)$ $\vec{v}(\theta) = (-3\sin\theta, 3\cos\theta, 0)$

This is counterclockwise as needed.

i. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle and compute its dot product with the velocity:

Solution: $\vec{F}(\vec{r}(\theta)) = (3\sin\theta, -3\cos\theta, 1)$ $\vec{F} \cdot \vec{v} = -9\sin^2\theta - 9\cos^2\theta = -9$

j. Compute the line integral $\oint_I \vec{F} \cdot d\vec{s}$

Solution: $\oint_{L} \vec{F} \cdot d\vec{s} = \int_{0}^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_{0}^{2\pi} -9 d\theta = -18\pi$

k. Combine $\oint_U \vec{F} \cdot d\vec{s}$ and $\oint_L \vec{F} \cdot d\vec{s}$ to get $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.

Solution: $\oint_{\partial C} \vec{F} \cdot d\vec{s} = \oint_{U} \vec{F} \cdot d\vec{s} + \oint_{L} \vec{F} \cdot d\vec{s} = 72\pi - 18\pi = 54\pi$

which agrees with part (d).