			1-8	/48
Name	ID		9	/15
MATH 251	Exam 2	Fall 2005	10	/20
Sections 503		P. Yasskin	11	/10
Multiple Choice: (6 points each. No part credit.)			12	/10
			Total	/103

- **1.** Find the volume of the solid under $z = 2x^2y$ above the region in the xy-plane between y = x and $y = x^2$.
 - **a.** $\frac{2}{35}$
 - **b.** $\frac{35}{12}$
 - **c.** $\frac{12}{35}$
 - **d.** $\frac{1}{35}$
 - **e.** $\frac{1}{12}$

- **2.** Compute $\iint \sin(x^2) dx dy$ over the triangle with vertices (0,0), $(\sqrt{\pi},0)$, $(\sqrt{\pi},\sqrt{\pi})$.
 - **a.** $-\pi$
 - **b.** $-\sqrt{\pi}$
 - **c.** 1
 - d. $\sqrt{\pi}$
 - e. π

Find the area of the heart shaped region inside the polar curve $r = |\theta|$.

c. $\frac{4\pi^3}{3}$ d. $\frac{8\pi^3}{3}$ e. $\frac{16\pi^3}{3}$

4. Compute $\iiint \nabla \cdot \vec{F} dV$ on the solid cylinder bounded by

 $x^2 + y^2 = 9$, z = 0 and z = 5 for the vector field $\vec{F} = (x^3, y^3, z(x^2 + y^2))$.

a. 45π

b. 90π

c. 360π

d. 810π

e. 900π

- **5.** The solid hemisphere $0 \le z \le \sqrt{4 x^2 y^2}$ has density $\delta = z$. Find the total mass.
 - **a.** $\pi/2$
 - **b**. π
 - c. 2π
 - d. 4π
 - e. 8π

6. The solid hemisphere $0 \le z \le \sqrt{4 - x^2 - y^2}$ has density $\delta = z$.

Find the *z*-component of the center of mass.

- **a.** 1 **b.** $\frac{32}{15}\pi$ **c.** $\frac{64}{15}\pi$ **d.** $\frac{8}{15}$ **e.** $\frac{16}{15}$

7. Compute $\int \sqrt{1+x^2+y^2} ds$ along the spiral $\vec{r}(t) = (t\cos t, t\sin t)$ from (0,0) to $(2\pi,0)$.

a.
$$\pi + \frac{\pi^3}{3}$$

b.
$$2\pi + \frac{8\pi^3}{3}$$

c.
$$\frac{(1+4\pi^2)^{3/2}}{3}$$

d.
$$\frac{2(1+4\pi^2)^{3/2}}{3}$$

e.
$$\frac{(1+4\pi^2)^{3/2}-1}{3}$$

8. Compute $\int y dx - x dy$ along the spiral $\vec{r}(t) = (t\cos t, t\sin t)$ from (0,0) to $(2\pi,0)$.

a.
$$\frac{-8\pi^3}{3}$$

b.
$$\frac{-4\pi^3}{3}$$

a.
$$\frac{-8\pi^3}{3}$$

b. $\frac{-4\pi^3}{3}$
c. $2\pi + \frac{8\pi^3}{3}$
d. $\frac{4\pi^3}{3}$
e. $\frac{8\pi^3}{3}$

d.
$$\frac{4\pi^3}{3}$$

e.
$$\frac{8\pi^3}{3}$$

Work Out: (Part credit possible. Show all work.)

9. (15 points) Compute $\iint_R y^2 dx dy$ over the diamond shaped region R bounded by

$$y = \frac{1}{x}$$
, $y = \frac{9}{x}$, $y = x$, $y = 4x$

FULL CREDIT for integrating in the curvilinear coordinates (u,v) where $u^2 = xy$ and $v^2 = \frac{y}{x}$. (Solve for x and y.)

HALF CREDIT for integrating in rectangular coordinates.

10. (20 points) Consider the hemispherical surface

$$z = \sqrt{4 - x^2 - y^2}$$

which may be parametrized by

$$\vec{R}(\varphi,\theta) = (2\sin\varphi\cos\theta, 2\sin\varphi\sin\theta, 2\cos\varphi).$$

Find each of the following:

b. (2 pts)
$$\vec{e}_{\theta} =$$

c. (3 pts)
$$\vec{N} =$$

d. (2 pts)
$$|\vec{N}| =$$

e. (5 pts) The total mass of the surface if the surface density is $\delta = z$.

f. (6 pts) The z-component of the center of mass of the surface if the surface density is $\delta = z$.

11. (10 points) Consider the vector field $\vec{F} = (-y^3, x^3, z(x^2 + y^2))$ on the hemispherical surface of problem 10. Find each of the following:

a. (3 pts)
$$\nabla \times \vec{F} =$$

b. (2 pts)
$$\nabla \times \vec{F}(\vec{R}(\varphi,\theta)) =$$

c. (5 pts) $\iint \nabla \times \vec{F} \cdot d\vec{S}$ with normal pointing up.

12. (10 points) A bowl has the shape $z=\frac{x^2+y^2}{3}$ for $z\leq 3$. The bowl is filled with liquid of density $\rho=12-2z$. Find the total mass of the liquid.