1-12 /60 Name_ ID_ 13 /20 Final Exam MATH 251 Fall 2005 Sections 503 P. Yasskin 14 /20 15 /10 Multiple Choice: (5 points each. No part credit.) /110 Total

- **1.** Find the area of the triangle with vertices (1,1,1), (2,2,4) and (1,3,9).
 - a. $\sqrt{2}$
 - **b.** $3\sqrt{2}$
 - **c.** $6\sqrt{2}$
 - **d.** 4
 - **e.** 2

2. If you drop a perpendicular from the point Q=(3,4) to the line through P=(1,1) with direction $\vec{v}=(2,1)$, then the foot of the perpendicular is R=

- **a.** (3.2,2.0)
- **b.** (3.4,2.2)
- **c.** (3.6,2.3)
- **d.** (3.8,2.4)
- **e.** (4.0,2.5)

3. Find the point where the line (x,y,z) = (3,2,1) + t(1,2,3) intersects the plane x-y+z=-2.

At this point, x + y + z =

- **a.** −6
- **b.** -2
- **c.** 0
- **d.** 2
- **e.** 6
- **4.** Use the linear approximation to $\ln(x) + 2\ln(y)$ at (x,y) = (1,1) to estimate $\ln(1.3) + 2\ln(.9)$.
 - **a.** 1.1
 - **b.** 1.05
 - **c.** 0.5
 - **d.** 0.1
 - **e.** 0.05
- **5.** Find the equation of the plane tangent to the hyperboloid $z^2 x^2 y^2 = 4$ at the point (1,2,3).
 - **a.** -2x + 4y + 6z = 24
 - **b.** x + 2y + 3z = 14
 - **c.** 2x + 4y 6z = -8
 - **d.** (x,y,z) = (1-2t,2-4t,3+6t)
 - **e.** (x,y,z) = (1-2t,2+4t,3+6t)

- **6.** Duke Skywater is travelling through the galaxy. He is currently at the point with galactic coordinates (40,25,53) (in lightyears), and his velocity is (.2,-.1,.3) (in lightyears/year). He measures the polaron density to be U=4300 polarons/cm³ and its gradient to be $\vec{\nabla} U=(3,2,1)$ polarons/cm³/lightyear. Find the rate at which he sees the polaron density changing.
 - **a.** 223
 - **b.** 21.4
 - **c.** 0.11
 - **d.** -0.11
 - **e.** 0.7
- 7. The function $f(x,y) = \frac{1}{4}x^3 xy + \frac{2}{27}y^3$ has a critical point at (x,y) = (2,3) which, according to the Second Derivative Test, is
 - a. a local minimum.
 - b. a local maximum.
 - c. a saddle point.
 - d. an inflection point.
 - e. The Second Derivative Test FAILS.
- 8. Rewrite the polar equation $r^2 = \sin 2\theta$ in rectangular coordinates.
 - **a.** $x^4 + y^4 = 2xy$
 - **b.** $(x^2 + y^2)^2 = 2xy$
 - **c.** $(x^2 + y^2)^{3/2} = 2y$
 - **d.** $(x^2 + y^2)^{3/2} = 2x$
 - **e.** $x^3 + y^3 = 2y$

9. For an ideal gas, the pressure, P, is a function of the temperature, T, and volume, V, given by $P = \frac{kT}{V}$ where k is a constant. For a certain sample of gas the current values are

$$T = 250$$
°K $V = 5 \text{ m}^3$ $k = 2 \frac{\text{kPa} \cdot \text{m}^3}{\text{°K}}$ and consequently $P = 100 \text{ kPa}$

If the volume and temperature are increasing at

$$\frac{dV}{dt} = 0.2 \frac{\text{m}^3}{\text{sec}}$$
 and $\frac{dT}{dt} = 6 \frac{\text{°K}}{\text{sec}}$

is the pressure increasing or decreasing and at what rate?

- **a.** decreasing at $1.6 \frac{\text{kPa}}{\text{sec}}$
- **b.** decreasing at $8 \frac{\text{kPa}}{\text{sec}}$
- **c.** increasing at $1.6 \frac{\text{kPa}}{\text{sec}}$
- **d.** increasing at $8 \frac{\text{kPa}}{\text{sec}}$
- e. Pressure is constant.

- **10.** A particle moves along the curve $\vec{r}(t) = (t, t^2, t^3)$ from (1, 1, 1) to (2, 4, 8) due to the force $\vec{F} = (z, y, x)$. Find the work done by the force.
 - **a.** $\frac{70}{3}$
 - **b.** 24
 - **c.** $\frac{45}{2}$
 - **d.** $\frac{96}{5}$
 - **e.** $\frac{93}{5}$

- **11.** Compute $\int_{(1,1,1)}^{(1/e,1/e,e^2)} \vec{F} \cdot d\vec{s}$ where $\vec{F} = (z,z,x+y)$ along the curve $\vec{r}(t) = (e^{-t},e^{-t},e^{2t})$. HINT: Note $\vec{F} = \vec{\nabla} f$ where f = xz + yz.
 - **a.** 4 4e
 - **b.** 4e 4
 - **c.** 4 2e
 - **d.** 2 2e
 - **e.** 2e 2

12. Use Green's Theorem to compute

$$\oint (y^2 + 2y - \ln x) \, dx + (4x + 2xy + e^y) \, dy$$

counterclockwise around the polar curve

$$r = \sin(3\theta)$$
 for $0 \le \theta \le \frac{\pi}{3}$.

- a. $\frac{\pi}{2}$
- b. $\frac{\pi}{3}$
- c. $\frac{\pi}{4}$
- d. $\frac{\pi}{6}$
- **e.** $\frac{\pi}{12}$

Work Out: (Points indicated. Part credit possible.)

13. (20 points) Verify Stokes' Theorem
$$\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (-yz, xz, z^2)$ and

the cylinder $x^2 + y^2 = 4$ for $1 \le z \le 3$ oriented out.

Be sure to check and explain the orientations.

Use the following steps:

Successively find:
$$\vec{e}_{\theta}$$
, \vec{e}_{z} , \vec{N} , $\vec{\nabla} \times \vec{F}$, $\vec{\nabla} \times \vec{F} \Big(\vec{R}(\theta, z) \Big)$, $\iint_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S}$

b. Let U be the upper circle. Parametrize U and compute the line integral. Successively find: $\vec{r}(\theta)$, $\vec{v}(\theta)$, $\vec{F}(\vec{r}(\theta))$, $\oint_U \vec{F} \cdot d\vec{s}$.

c. Let L be the lower circle. Parametrize L and compute the line integral. Successively find: $\vec{r}(\theta)$, $\vec{v}(\theta)$, $\vec{F}(\vec{r}(\theta))$, $\oint_L \vec{F} \cdot d\vec{s}$.

d. Combine $\oint_U \vec{F} \cdot d\vec{s}$ and $\oint_L \vec{F} \cdot d\vec{s}$ to get $\oint_{\partial C} \vec{F} \cdot d\vec{s}$.

14. (20 points) Verify Gauss' Theorem
$$\iiint\limits_V \vec{\nabla} \cdot \vec{F} \, dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$$

for the vector field $\vec{F} = (xz, yz, z^2)$ and

the volume above the paraboloid P: $z = x^2 + y^2$ for $z \le 4$ and below the disk D: $x^2 + y^2 \le 4$ with z = 4.

Be sure to check and explain the orientations.

Use the following steps.

a. Compute the divergence $\vec{\nabla} \cdot \vec{F}$ and the volume integral $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV$.

b. Parametrize the disk, D, and compute the surface integral: Successively find: $\vec{R}(r,\theta)$, \vec{e}_r , \vec{e}_θ , \vec{N} , $\vec{F}(\vec{R}(r,\theta))$, $\iint_D \vec{F} \cdot d\vec{S}$.

c. The paraboloid, P, may be parametrize as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r^2)$. Compute the surface integral:

Successively find: \vec{e}_r , \vec{e}_θ , \vec{N} , $\vec{F}(\vec{R}(r,\theta))$, $\iint_P \vec{F} \cdot d\vec{S}$.

d. Combine $\iint_D \vec{F} \cdot d\vec{S}$ and $\iint_P \vec{F} \cdot d\vec{S}$ to get $\iint_{\partial V} \vec{F} \cdot d\vec{S}$.

15. (10 points) Find the point on the plane z = 2 - 2x - y that is closest to the origin.