Name	ID	
MATH 251	Quiz 1	Fall 2005
Sections 503		P Vasskin

1-4	/20
5	/ 5
Total	/25

Multiple Choice & Work Out: (5 points each)

- **1.** A triangle has vertices A = (0,3,2), B = (-2,3,0) and C = (-2,0,3). Find the angle at vertex B.
 - **a.** $\frac{\pi}{6}$
 - **b.** $\frac{\pi}{3}$
 - c. $\frac{\pi}{2}$
 - **d.** $\frac{2\pi}{3}$
 - **e.** $\frac{5\pi}{6}$

- **2.** A triangle has vertices A = (0,3,2), B = (-2,3,0) and C = (-2,0,3). Find the area of the triangle.
 - **a.** 15
 - **b.** 30
 - **c.** $2\sqrt{3}$
 - **d.** $3\sqrt{3}$
 - **e.** $6\sqrt{3}$

- 3. If \vec{u} points Up (away from the center of the earth) and \vec{v} points NorthEast, then $\vec{u} \times \vec{v}$ points
 - a. Up
 - **b**. Down
 - **c.** SouthEast
 - d. SouthWest
 - e. NorthWest

4. Find the equation of the plane which is perpendicular to the line (x,y,z) = (2-3t,3+t,1-t) and passes through the point (-1,4,3).

a.
$$2x + 3y + z = 13$$

b.
$$2x + 3y + z = -4$$

c.
$$-3x + y - z = 4$$

d.
$$-3x + y - z = -4$$

e.
$$-x + 4y + 3z = 13$$

5. Consider the set of all points P such that the distance from P to (3,3,3) is twice the distance from P to (0,0,0). This set of points is a sphere. Find its center and radius.