Name_____ ID____

MATH 251

Quiz 1

Fall 2005

Sections 503

Solutions

P. Yasskin

1-4	/20
5	/ 5
Total	/25

Multiple Choice & Work Out: (5 points each)

- **1.** A triangle has vertices A = (0,3,2), B = (-2,3,0) and C = (-2,0,3). Find the angle at vertex B.
 - **a.** $\frac{\pi}{6}$
 - **b.** $\frac{\pi}{3}$ Correct Choice
 - c. $\frac{\pi}{2}$
 - **d.** $\frac{2\pi}{3}$
 - **e.** $\frac{5\pi}{6}$

$$\overrightarrow{BA} = A - B = (2,0,2) \qquad \overrightarrow{BC} = C - B = (0,-3,3) \qquad \overrightarrow{BA} \cdot \overrightarrow{BC} = 6$$

$$\begin{vmatrix} \overrightarrow{BA} \end{vmatrix} = \sqrt{4+4} = 2\sqrt{2} \qquad \begin{vmatrix} \overrightarrow{BC} \end{vmatrix} = \sqrt{9+9} = 3\sqrt{2}$$

$$\cos \theta = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\begin{vmatrix} \overrightarrow{BA} \end{vmatrix} \begin{vmatrix} \overrightarrow{BC} \end{vmatrix}} = \frac{6}{2\sqrt{2}3\sqrt{2}} = \frac{1}{2} \qquad \Rightarrow \qquad \theta = 60^{\circ} = \frac{\pi}{3}$$

- **2.** A triangle has vertices A = (0,3,2), B = (-2,3,0) and C = (-2,0,3). Find the area of the triangle.
 - **a.** 15
 - **b.** 30
 - **c.** $2\sqrt{3}$
 - **d.** $3\sqrt{3}$ Correct Choice
 - **e.** $6\sqrt{3}$

$$\overrightarrow{BA} = A - B = (2,0,2) \qquad \overrightarrow{BC} = C - B = (0,-3,3)$$

$$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 2 \\ 0 & -3 & 3 \end{vmatrix} = \hat{i}(6) - \hat{j}(6) + \hat{k}(-6) = (6,-6,-6)$$

$$Area = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}| = \frac{1}{2} \sqrt{36 + 36 + 36} = 3\sqrt{3}$$

- 3. If \vec{u} points Up (away from the center of the earth) and \vec{v} points NorthEast, then $\vec{u} \times \vec{v}$ points
 - a. Up
 - **b.** Down
 - c. SouthEast
 - d. SouthWest
 - e. NorthWest Correct Choice

Put your fingers Up with the palm facing NorthEast, your thumb points NorthWest.

4. Find the equation of the plane which is perpendicular to the line (x,y,z) = (2-3t,3+t,1-t) and passes through the point (-1,4,3).

a.
$$2x + 3y + z = 13$$

b.
$$2x + 3y + z = -4$$

c.
$$-3x + y - z = 4$$
 Correct Choice

d.
$$-3x + y - z = -4$$

e.
$$-x + 4y + 3z = 13$$

The normal to the plane is the tangent vector to the line: $\vec{N} = \vec{v} = (-3, 1, -1)$. A point on the plane is P = (-1, 4, 3) So the plane is $\vec{N} \cdot \vec{X} = \vec{N} \cdot P$ or -3x + y - z = 3 + 4 - 3 = 4

5. Consider the set of all points P such that the distance from P to (3,3,3) is twice the distance from P to (0,0,0). This set of points is a sphere. Find its center and radius.

Let
$$P = (x, y, z)$$
, $O = (0, 0, 0)$ and $Q = (3, 3, 3)$. Then $|\overrightarrow{PO}| = \sqrt{x^2 + y^2 + z^2}$ and $|\overrightarrow{PQ}| = \sqrt{(x-3)^2 + (y-3)^2 + (z-3)^2}$. The definition of P is $|\overrightarrow{PQ}| = 2|\overrightarrow{PO}|$. So
$$\sqrt{(x-3)^2 + (y-3)^2 + (z-3)^2} = 2\sqrt{x^2 + y^2 + z^2}$$
$$(x-3)^2 + (y-3)^2 + (z-3)^2 = 4(x^2 + y^2 + z^2)$$
$$x^2 + y^2 + z^2 - 6x - 6y - 6z + 27 = 4x^2 + 4y^2 + 4z^2$$
$$27 = 3x^2 + 3y^2 + 3z^2 + 6x + 6y + 6z$$
$$x^2 + y^2 + z^2 + 2x + 2y + 2z = 9$$
$$x^2 + y^2 + z^2 + 2x + 2y + 2z + 3 = 12$$
$$(x+1)^2 + (y+1)^2 + (z+1)^2 = 12$$