Name		ID			
MATH 251	Quiz 2	Fall 2005	To	otal	/34
Sections 503		P. Yasskin			

All Work Out: (2 points each, includes 9 points extra credit)

Consider the parametric curve with position vector $\vec{r} = \left(t, t^2, \frac{2}{3}t^3\right)$. Compute each of the following:

- 1. velocity $\vec{v} =$
- **2.** acceleration $\vec{a} =$
- 3. jerk $\vec{j} =$

5. speed

L =

- **4.** length of velocity Simplify. (Note the quantity in the square root is a perfect square.) $|\vec{v}| =$
- $\frac{ds}{dt} =$ **6.** arclength between the points (0,0,0) and $\left(1,1,\frac{2}{3}\right)$
- 7. unit tangent vector $\hat{T} =$
- 8. cross product of velocity and acceleration $\vec{v} \times \vec{a} =$
- **9.** length of cross product of velocity and acceleration $|\vec{v} \times \vec{a}| =$

10. unit binormal

$$\hat{B} =$$

11. unit principal normal

$$\hat{N} =$$

12. curvature

$$\kappa = \frac{|\vec{v} \times \vec{a}|}{|\vec{v}|^3} =$$

13. torsion

$$\tau = \frac{\vec{v} \times \vec{a} \cdot \vec{j}}{|\vec{v} \times \vec{a}|^2} =$$

14. tangential acceleration (use 2 methods)

$$a_T = \vec{a} \cdot \hat{T} =$$

- **15.** $a_T = \frac{d}{ds} \frac{ds}{dt} =$
- **16.** normal acceleration (use 2 methods)

$$a_N = \vec{a} \cdot \hat{N} =$$

17. $a_N = \kappa |\vec{v}|^2 =$