$1-12$	$/ 60$
13	$/ 20$
14	$/ 10$
15	$/ 15$
Total	$/ 105$

1. Let L be the line $\vec{r}(t)=(6+7 t,-3-4 t, 5-2 t)$. Find the equation of the plane perpenducular to L that contains the point $(3,-5,2)$.
a. $3(x-7)-5(y+4)+2(z+2)=0$
b. $3(x-7)+5(y+4)+2(z+2)=0$
c. $7(x-3)-4(y+5)-2(z-2)=0 \quad$ Correct Choice
d. $7(x-3)+4(y+5)-2(z-2)=0$
e. $6(x-3)-3(y+5)+5(z-2)=0$

The normal vector to the plane is the tangent vector to the line: $\quad \vec{N}=\vec{v}=(7,-4,-2)$
The plane passes thru $P=(3,-5,2)$. So its equation is $\vec{N} \cdot(X-P)=0$ or $7(x-3)-4(y+5)-2(z-2)=0$
2. Find the equation of the plane tangent to the graph of $z=x \sin y$ at $(x, y)=\left(2, \frac{\pi}{3}\right)$.
a. $z=\frac{1}{2} x+\sqrt{3} y-\frac{\pi}{\sqrt{3}}+\sqrt{3}-1$
b. $z=\frac{1}{2} x+\sqrt{3} y-\frac{\pi}{\sqrt{3}}+\sqrt{3}$
c. $z=\frac{1}{2} x+\sqrt{3} y+\sqrt{3}-1$
d. $z=\frac{\sqrt{3}}{2} x+y-\frac{\pi}{3} \quad$ Correct Choice
e. $z=\frac{\sqrt{3}}{2} x+y+\sqrt{3}$

Let $f=x \sin y$. Then $f\left(2, \frac{\pi}{3}\right)=2 \sin \frac{\pi}{3}=\sqrt{3}$.
$f_{x}=\sin y, \quad f_{y}=x \cos y, \quad f_{x}\left(2, \frac{\pi}{3}\right)=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \quad f_{y}\left(2, \frac{\pi}{3}\right)=2 \cos \frac{\pi}{3}=1$
The tangent plane is

$$
\begin{gathered}
z=f_{\tan }(x, y)=f\left(2, \frac{\pi}{3}\right)+f_{x}\left(2, \frac{\pi}{3}\right)(x-2)+f_{y}\left(2, \frac{\pi}{3}\right)\left(y-\frac{\pi}{3}\right) \\
=\sqrt{3}+\frac{\sqrt{3}}{2}(x-2)+1\left(y-\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} x+y-\frac{\pi}{3}
\end{gathered}
$$

3. Find the equation of the line perpendicular to the surface $x y+z^{2}=6$ at the point $(1,2,2)$.
a. $x=2+t, y=-1+2 t, z=4+2 t$
b. $x=2+t, y=-1-2 t, z=4+2 t$
c. $x=2+t, y=1+2 t, z=4+2 t$
d. $x=1+2 t, y=2-t, z=2+4 t$
e. $x=1+2 t, y=2+t, z=2+4 t \quad$ Correct Choice

Let $f=x y+z^{2}$. The gradient of f is perpenducular to its level sets: $\vec{\nabla} f=(y, x, 2 z)$
The tangent to the line is the normal at $P=(1,2,2): \quad \vec{v}=\vec{N}=\left.\vec{\nabla} f\right|_{(1,2,2)}=(2,1,4)$
So the line is $X=P+\vec{t}=(1,2,2)+t(2,1,4)=(1+2 t, 2+t, 2+4 t)$
4. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}-2 y}{y-x y}=$
a. -2 Correct Choice
b. 0
c. 1
d. 2
e. Does Not Exist
$\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}-2 y}{y-x y}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y-2}{1-x}=-2$
5. The radius and height of a cylinder are currently $r=10 \mathrm{~cm}$ and $h=6 \mathrm{~cm}$. If the radius is increasing at $\frac{d r}{d t}=2 \frac{\mathrm{~cm}}{\mathrm{~min}}$ and the volume is increasing at $\frac{d V}{d t}=40 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}$, is the height increasing or decreasing and at what rate?
a. decreasing at $2 \frac{\mathrm{~cm}}{\mathrm{~min}} \quad$ Correct Choice
b. decreasing at $\frac{4}{5} \frac{\mathrm{~cm}}{\min }$
c. increasing at $2 \frac{\mathrm{~cm}}{\mathrm{~min}}$
d. increasing at $\frac{4}{5} \frac{\mathrm{~cm}}{\mathrm{~min}}$
e. The height is constant.
$V=\pi r^{2} h \quad \frac{d V}{d t}=\frac{\partial V}{\partial r} \frac{d r}{d t}+\frac{\partial V}{\partial h} \frac{d h}{d t}=2 \pi r h \frac{d r}{d t}+\pi r^{2} \frac{d h}{d t}$
At present, $40 \pi=2 \pi 60 \cdot 2+\pi 100 \frac{d h}{d t} \quad$ So $100 \frac{d h}{d t}=40-240=-200 \quad$ or $\quad \frac{d h}{d t}=-2$
6. Han Duet is flying the Millenium Eagle through a radion field with density $\rho=z(x+y)$. He is currently located at $(-4,3,5)$ in galactic coordinates. In what direction should he fly to decrease the radion density as fast as possible?
a. $(-5,5,1)$
b. $(-5,-5,1)$ Correct Choice
c. $(5,5,-1)$
d. $(28,-21,35)$
e. $(-28,21,-35)$
$\vec{\nabla} \rho=\left.(z, z, x+y) \quad \vec{\nabla} \rho\right|_{(-4,3,5)}=(5,5,-1)$
The gradient points in the direction of maximum increase of the density.
So the direction of maximum decrease is $-\left.\vec{\nabla} \rho\right|_{(-4,3,5)}=(-5,-5,1)$.
7. Han Duet is flying the Millenium Eagle through a radion field with density $\rho=z(x+y)$. He is currently located at $(-4,3,5)$ in galactic coordinates and has velocity $\vec{v}=(0.2,-0.1,0.3)$. What does he see as the time rate of change of the radion density?
a. 0.2 Correct Choice
b. -0.2
c. 1.2
d. -1.2
e. 0.4
$\frac{d \rho}{d t}=\vec{v} \cdot \vec{\nabla} \rho=(0.2,-0.1,0.3) \cdot(5,5,-1)=1-.5-.3=.2$
8. Find the volume below $z=2 x^{2} y$ above the region in the $x y$-plane bounded by $y=0$, $y=x^{2}$ and $x=2$.
a. $\frac{32}{5}$
b. $\frac{32}{3}$
c. $\frac{128}{7}$ Correct Choice
d. 32
e. $\frac{512}{9}$
$V=\int_{0}^{2} \int_{0}^{x^{2}} 2 x^{2} y d y d x=\int_{0}^{2}\left[x^{2} y^{2}\right]_{y=0}^{x^{2}} d x=\int_{0}^{2} x^{6} d x=\left.\frac{x^{7}}{7}\right|_{x=0} ^{2}=\frac{128}{7}$
9. The graph of the polar curve $r=\sqrt{\sin (\theta)}$ is shown at the right. Find the area enclosed.
a. 1.2
b. 1.0 Correct Choice
c. 0.8

d. $\frac{\pi}{3}$
e. $\frac{\pi}{4}$
$A=\iint 1 d A=\int_{0}^{\pi} \int_{0}^{\sqrt{\sin \theta}} r d r d \theta=\int_{0}^{\pi}\left[\frac{r^{2}}{2}\right]_{r=0}^{\sqrt{\sin \theta}} d \theta=\frac{1}{2} \int_{0}^{\pi} \sin \theta d \theta=-\left.\frac{1}{2} \cos \theta\right|_{\theta=0} ^{\pi}=\frac{1}{2}--\frac{1}{2}=1$
10. Compute $\int_{(-1,0,-1)}^{(2,0,8)} \vec{F} \cdot d \vec{s}$ where $\vec{F}=\left(3 x^{2}, 2 y, 1\right)$ along the curve $\vec{r}(t)=\left(t \cos (\pi t), t^{2} \sin (\pi t), t^{3} \cos (\pi t)\right)$.

HINT: Note $\vec{F}=\vec{\nabla} f$ where $f=x^{3}+y^{2}+z$.
a. 8
b. 9
c. 12
d. 15
e. 18

Correct Choice
By the Fundamental Theorem of Calculus for Curves,
$\int_{(-1,0,-1)}^{(2,0,8)} \vec{F} \cdot d \vec{s}=\int_{(-1,0,-1)}^{(2,0,8)} \vec{\nabla} f \cdot d \vec{s}=f(2,0,8)-f(-1,0,-1)=(8+8)-(-1-1)=18$
11. Compute $\oint\left(\ln x-3 x e^{y}\right) d x+\left(x^{2} e^{y}\right) d y$ along the closed curve which travels along the straight line from $(0,0)$ to $(1,0)$, along the straight line from $(1,0)$ to $(1,1)$ and along $y=x^{2}$ from $(1,1)$ to $(0,0)$.
a. $5-5 e$
b. $5 e-5$
c. $5-\frac{5}{2} e$
d. $\frac{5}{2} e-5 \quad$ Correct Choice
e. Diverges

By Green's Theorem,

$$
\begin{aligned}
\oint(\ln x & \left.-3 x e^{y}\right) d x+\left(x^{2} e^{y}\right) d y=\iint\left[\frac{\partial}{\partial x}\left(x^{2} e^{y}\right)-\frac{\partial}{\partial y}\left(\ln x-3 x e^{y}\right)\right] d x d y \\
& =\iint\left[\left(2 x e^{y}\right)-\left(-3 x e^{y}\right)\right] d x d y=\int_{0}^{1} \int_{0}^{x^{2}} 5 x e^{y} d y d x=\int_{0}^{1}\left[5 x e^{y}\right]_{y=0}^{x^{2}} d x=\int_{0}^{1}\left(5 x e^{x^{2}}-5 x\right) d x \\
& =\left[\frac{5}{2} e^{x^{2}}-\frac{5}{2} x^{2}\right]_{0}^{1}=\left(\frac{5}{2} e-\frac{5}{2}\right)-\left(\frac{5}{2}\right)=\frac{5}{2} e-5
\end{aligned}
$$

12. Compute $\iint_{\partial P} \vec{F} \cdot d \vec{S}$ over the complete surface of the solid paraboloid

$$
x^{2}+y^{2} \leq z \leq 4
$$

with outward normal, for the vector field

$$
\vec{F}=\left(x^{3}, y^{3}, z\right)
$$

a. $\frac{16 \pi}{3}$
b. $\frac{32 \pi}{3}$
c. 16π
d. 32π Correct Choice
e. 48π

Apply Gauss' Theorem: $\quad \vec{\nabla} \cdot F=3 x^{2}+3 y^{2}+1=3 r^{2}+1 \quad d V=r d r d \theta d z$

$$
\begin{aligned}
& \iint_{\partial P} \vec{F} \cdot d \vec{S}=\iiint_{P} \vec{\nabla} \cdot F d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4}\left(3 r^{2}+1\right) r d z d r d \theta=2 \pi \int_{0}^{2}\left[\left(3 r^{3}+r\right) z\right]_{z=r^{2}}^{4} d r=2 \pi \int_{0}^{2}\left(3 r^{3}+r\right)\left(4-r^{2}\right) \\
& \quad=2 \pi \int_{0}^{2}\left(12 r^{3}-3 r^{5}+4 r-r^{3}\right) d r=2 \pi\left[3 r^{4}-\frac{r^{6}}{2}+2 r^{2}-\frac{r^{4}}{4}\right]_{0}^{2}=2 \pi(48-32+8-4)=40 \pi
\end{aligned}
$$

NO CORRECT ANSWER! Problem will be thrown out. Everyone gets the 5 points.

Intended problem 12:

Compute $\iint_{\partial P} \vec{F} \cdot d \vec{S}$ over the complete surface of the solid paraboloid

$$
x^{2}+y^{2} \leq z \leq 4
$$

with outward normal, for the vector field

$$
\vec{F}=\left(x^{3}, y^{3}, x+y\right)
$$

a. $\frac{16 \pi}{3}$
b. $\frac{32 \pi}{3}$
c. 16π
d. 32π Correct Choice
e. 48π

Apply Gauss' Theorem: $\quad \vec{\nabla} \cdot F=3 x^{2}+3 y^{2}=3 r^{2} \quad d V=r d r d \theta d z$

$$
\begin{aligned}
& \iint_{\partial P} \vec{F} \cdot \vec{d} \vec{S}=\iiint_{P} \vec{\nabla} \cdot F d V=\int_{0}^{2 \pi} \int_{0}^{2} \int_{r^{2}}^{4} 3 r^{2} r d z d r d \theta=2 \pi \int_{0}^{2}\left[3 r^{3} z\right]_{z=r^{2}}^{4} d r=2 \pi \int_{0}^{2} 3 r^{3}\left(4-r^{2}\right) d r \\
& \quad=2 \pi \int_{0}^{2}\left(12 r^{3}-3 r^{5}\right) d r=2 \pi\left[3 r^{4}-\frac{r^{6}}{2}\right]_{0}^{2}=2 \pi(48-32)=32 \pi
\end{aligned}
$$

13. (20 points) Verify Stokes' Theorem

$$
\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\oint_{\partial C} \vec{F} \cdot d \vec{s}
$$

for the vector field $\vec{F}=\left(-y z^{2}, x z^{2}, z^{3}\right)$ and the cone $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 3$ oriented down and out.

Be sure to check and explain the orientations.

Use the following steps:
a. The conical surface may be parametrized by $\vec{R}(r, \theta)=(r \cos \theta, r \sin \theta, r)$.

Compute the surface integral:
Successively find: $\vec{e}_{r}, \quad \vec{e}_{\theta}, \vec{N}, \vec{\nabla} \times \vec{F}, \quad \vec{\nabla} \times \vec{F}(\vec{R}(r, \theta)), \iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}$

$$
\begin{aligned}
& \text { } \left.\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\vec{e}_{r}= & (\cos \theta, & \sin \theta,
\end{array} \quad 1\right) \\
& \vec{e}_{\theta}= \\
& \left(\begin{array}{ll}
-r \sin \theta, & r \cos \theta,
\end{array}\right) \\
& \vec{N}=\vec{e}_{r} \times \vec{e}_{\theta}=\hat{\imath}(-r \cos \theta)-\hat{\jmath}(r \sin \theta)+\hat{k}\left(r \cos ^{2} \theta+r \sin ^{2} \theta\right)=(-r \cos \theta,-r \sin \theta, r) \\
& \vec{N} \text { points up and in. Reverse it: } \quad \vec{N}=(r \cos \theta, r \sin \theta,-r)
\end{aligned}
$$

$\vec{\nabla} \times \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y z^{2}, & x z^{2}, & z^{3}\end{array}\right|=\hat{\imath}(0-2 x z)-\hat{\jmath}(0--2 y z)+\hat{k}\left(z^{2}--z^{2}\right)=\left(-2 x z,-2 y z, 2 z^{2}\right)$
$\vec{\nabla} \times \vec{F}(\vec{R}(r, \theta))=\left(-2 r^{2} \cos \theta,-2 r^{2} \sin \theta, 2 r^{2}\right)$
$\vec{\nabla} \times \vec{F} \cdot \vec{N}=-2 r^{3} \cos ^{2} \theta-2 r^{3} \sin ^{2} \theta-2 r^{3}=-4 r^{3}$
$\iint_{C} \vec{\nabla} \times \vec{F} \cdot d \vec{S}=\iint_{C} \vec{\nabla} \times \vec{F} \cdot \vec{N} d r d \theta=\int_{0}^{2 \pi} \int_{0}^{3}-4 r^{3} d r d \theta=2 \pi\left[-r^{4}\right]_{r=0}^{3}=-162 \pi$
b. Parametrize the boundary circle ∂C and compute the line integral.

Successively find: $\vec{r}(\theta), \quad \vec{v}(\theta), \vec{F}(\vec{r}(\theta)), \oint_{\partial C} \vec{F} \cdot d \vec{s}$.
$\vec{r}(\theta)=(3 \cos \theta, 3 \sin \theta, 3)$
$\vec{v}(\theta)=(-3 \sin \theta, 3 \cos \theta, 0)$
By the right hand rule the upper curve must be traversed clockwise but \vec{v} points counterclockwise. So reverse $\vec{v}: \quad \vec{v}(\theta)=(3 \sin \theta,-3 \cos \theta, 0)$
$\vec{F}(\vec{r}(\theta))=\left(-y z^{2}, x z^{2}, z^{3}\right)=(-27 \sin \theta, 27 \cos \theta, 27)$
$\oint_{\partial C} \vec{F} \cdot d \vec{s}=\int_{0}^{2 \pi} \vec{F} \cdot \vec{v} d \theta=\int_{0}^{2 \pi}-81 \sin ^{2} \theta-81 \cos ^{2} \theta d \theta=\int_{0}^{2 \pi}-81 d \theta=-162 \pi$
They agree!
14. (10 points) Find all critical points of $f(x, y)=x y-\frac{1}{3} x^{3}-y^{2}$ and classify each of them as either a local minimum, a local maximum or a a saddle point. Justify your answers.

$$
\left.\begin{array}{l}
f_{x}=y-x^{2}=0 \\
f_{y}=x-2 y=0
\end{array}\right\} \Rightarrow \begin{aligned}
& y=x^{2} \\
& x=2 y=2 x^{2}
\end{aligned} \quad \Rightarrow \quad x(1-2 x)=0 \quad \Rightarrow \quad x=0, \frac{1}{2}
$$

If $x=0$ then $y=0$. If $x=\frac{1}{2}$ then $y=\frac{1}{4}$.
So the critical points are $(0,0)$ and $\left(\frac{1}{2}, \frac{1}{4}\right)$.
Apply the Second Derivative Test:

$$
\begin{aligned}
& f_{x x}=-2 x \quad f_{y y}=-2 \quad f_{x y}=1 \quad D=f_{x x} f_{y y}-f_{x y}^{2}=4 x-1 \\
& D(0,0)=-1<0 \quad \Rightarrow \quad(0,0) \quad \text { is a saddle } \\
& D\left(\frac{1}{2}, \frac{1}{4}\right)=4\left(\frac{1}{2}\right)-1=1>0 \quad \& \quad f_{x x}\left(\frac{1}{2}, \frac{1}{4}\right)=-2\left(\frac{1}{2}\right)=-1<0 \\
& \quad \Rightarrow \quad\left(\frac{1}{2}, \frac{1}{4}\right) \text { is a local maximum }
\end{aligned}
$$

15. (15 points) Find the mass and z-component of the center of mass of the solid hemisphere

$$
0 \leq x \leq \sqrt{4-y^{2}-z^{2}}
$$

if the density is given by $\delta=3+z$.

In spherical coordinates, $z=\rho \cos \varphi, \delta=3+z=3+\rho \cos \varphi$ and $d V=\rho^{2} \sin \varphi d \rho d \varphi d \theta$.

$$
M=\iiint \delta d V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\pi} \int_{0}^{2}(3+\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta=\pi \int_{0}^{\pi} \int_{0}^{2}\left(3 \rho^{2}+\rho^{3} \cos \varphi\right) \sin \varphi d \rho d \varphi
$$

$$
=\pi \int_{0}^{\pi}\left[\rho^{3}+\frac{\rho^{4}}{4} \cos \varphi\right]_{\rho=0}^{2} \sin \varphi d \varphi=\pi \int_{0}^{\pi}(8+4 \cos \varphi) \sin \varphi d \varphi \quad u=\cos \varphi \quad d u=-\sin \varphi d \varphi
$$

$$
=-\pi \int_{1}^{-1}(8+4 u) d u=-\pi\left[8 u+2 u^{2}\right]_{1}^{-1}=-\pi(-6-10)=16 \pi
$$

$$
M_{x y}=\iiint_{z} z d V=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\pi} \int_{0}^{2} \rho \cos \varphi(3+\rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \varphi d \theta=\pi \int_{0}^{\pi} \int_{0}^{2}\left(3 \rho^{3}+\rho^{4} \cos \varphi\right) \cos \varphi \sin \varphi d \rho
$$

$$
=\pi \int_{0}^{\pi}\left[\frac{3 \rho^{4}}{4}+\frac{\rho^{5}}{5} \cos \varphi\right]_{\rho=0}^{2} \cos \varphi \sin \varphi d \varphi=\pi \int_{0}^{\pi}\left(12+\frac{32}{5} \cos \varphi\right) \cos \varphi \sin \varphi d \varphi
$$

$$
=-\pi \int_{1}^{-1}\left(12+\frac{32}{5} u\right) u d u=-\pi\left[6 u^{2}+\frac{32}{15} u^{3}\right]_{1}^{-1}=-\pi\left[\left(6-\frac{32}{15}\right)-\left(6+\frac{32}{15}\right)\right]=\frac{64 \pi}{15}
$$

$\bar{z}=\frac{M_{x y}}{M}=\frac{64 \pi}{15 \cdot 16 \pi}=\frac{4}{15}$

