Name_ ID.

MATH 251

Quiz 1

Spring 2006

Sections 506

Solutions

P. Yasskin

1-4	/20
5	/ 5
Total	/25

Multiple Choice & Work Out: (5 points each)

- **1.** A triangle has vertices P = (4,1,2), Q = (2,1,4) and R = (2,1,7). Find the angle at vertex *O*.

 - **b.** $\frac{-\pi}{4}$
 - c. $\frac{\pi}{2}$
 - d. $\frac{-\pi}{2}$
 - **e.** $\frac{3\pi}{4}$ Correct Choice

$$\overrightarrow{QP} = P - Q = (2, 0, -2) \qquad \overrightarrow{QR} = R - Q = (0, 0, 3) \qquad \overrightarrow{QP} \cdot \overrightarrow{QR} = -6$$

$$\left| \overrightarrow{QP} \right| = \sqrt{4 + 4} = 2\sqrt{2} \qquad \left| \overrightarrow{QR} \right| = \sqrt{9} = 3$$

$$\cos \theta = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{\left| \overrightarrow{QP} \right| \left| \overrightarrow{QR} \right|} = \frac{-6}{2\sqrt{2}3} = \frac{-1}{\sqrt{2}} \qquad \Rightarrow \qquad \theta = 135^{\circ} = \frac{3\pi}{4}$$

- **2.** A triangle has vertices P = (4,1,2), Q = (2,1,4) and R = (2,1,7). Find the area of the triangle.
 - **a.** 3 **Correct Choice**
 - **b.** 6
 - **c.** $6\sqrt{3}$
 - **d.** 18
 - **e.** 36

$$\overrightarrow{QP} = P - Q = (2, 0, -2)$$
 $\overrightarrow{QR} = R - Q = (0, 0, 3)$

$$\overrightarrow{QP} \times \overrightarrow{QR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -2 \\ 0 & 0 & 3 \end{vmatrix} = \hat{i}(0) - \hat{j}(6) + \hat{k}(0) = (0, -6, 0)$$

Area =
$$\frac{1}{2} \left| \overrightarrow{QP} \times \overrightarrow{QR} \right| = \frac{1}{2} \sqrt{36} = 3$$

- **3.** If \vec{u} points NorthWest and \vec{v} points Down (toward the center of the earth), then $\vec{u} \times \vec{v}$ points
 - a. Up
 - **b.** SouthEast
 - c. SouthWest Correct Choice
 - d. NorthEast
 - e. NorthWest

Put your fingers NorthWest with the palm facing Down, your thumb points SouthWest.

4. Find the equation of the line which is perpendicular to the plane 2x - 4y + 3z = 3 and passes through the point (3,2,-1). HINT: The normal to the plane is the tangent to the line.

a.
$$(x,y,z) = (3+2t,2+4t,-1+3t)$$

b.
$$(x,y,z) = (3+2t,2-4t,-1+3t)$$
 Correct Choice

c.
$$(x,y,z) = (2+3t,4+2t,3-t)$$

d.
$$(x,y,z) = (2+3t,-4+2t,3-t)$$

e.
$$(x,y,z) = (2+3t,4-2t,3-t)$$

The normal to the plane is $\vec{N} = (2, -4, 3)$. So the tangent vector to the line is $\vec{v} = (2, -4, 3)$.

A point on the line is P = (3, 2, -1). So the line is $X = P + t\vec{v} = (3 + 2t, 2 - 4t, -1 + 3t)$.

5. Find the point where the line (x,y,z) = (1-t,2+2t,-3+3t) intersects the plane 3x-2y+z=4.

Substitute the line into the plane and solve for *t*:

$$3(1-t)-2(2+2t)+(-3+3t)=4$$
 $-4-4t=4$ $-4t=8$ $t=(-2)$

Substitute back into the line:

$$(x,y,z) = (1-(-2),2+2(-2),-3+3(-2)) = (3,-2,-9)$$