Name______ ID_____

MATH 251 Exam 2 Version A Spring 2013

Sections 506 P. Yasskin

1-13	/52
1 10	702
14	/12
15	/28
16	/12
Total	/104

Multiple Choice: (4 points each. No part credit.)

- 1. Compute $\iint_R xy dA$ over the region R between the parabola $y = x^2$ and the line y = 2x.
 - **a**. $\frac{4}{3}$
 - **b**. $\frac{8}{3}$
 - **c**. $\frac{32}{15}$
 - **d**. $\frac{10}{3}$
 - **e**. $\frac{29}{6}$

- **2**. Compute $\int_0^3 \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} x \, dy \, dx$ by converting to polar coordinates.
 - **a**. 36
 - **b**. 27
 - **c**. 18
 - **d**. 9
 - **e**. 3

- **3**. Find the mass of the triangular plate with vertices (0,0), (2,-6) and (2,6) if the surface density is $\rho = x^2$.
 - **a**. 4
 - **b**. 6
 - **c**. 12
 - **d**. 16
 - **e**. 24

- **4**. Find the center of mass of the triangular plate with vertices (0,0), (2,-6) and (2,6) if the surface density is $\rho = x^2$.
 - **a**. $(\frac{8}{5},0)$
 - **b**. $(\frac{9}{5}, 0)$
 - **c**. $\left(\frac{5}{8}, 0\right)$
 - **d**. $(\frac{5}{9}, 0)$
 - **e**. $(\frac{6}{5}, 0)$

- **5**. Which of the following integrals is NOT equivalent to $\int_0^4 \int_0^{4-z} \int_0^{\sqrt{y}} f(x,y,z) \, dx \, dy \, dz$? The region is shown.
 - **a.** $\int_0^4 \int_0^{\sqrt{4-z}} \int_{x^2}^{4-z} f(x,y,z) \, dy \, dx \, dz$
 - **b**. $\int_0^4 \int_0^{4-y} \int_{y^2}^2 f(x, y, z) \, dx \, dz \, dy$
 - **c.** $\int_0^4 \int_0^{\sqrt{y}} \int_0^{4-y} f(x, y, z) \, dz \, dx \, dy$
 - **d**. $\int_0^2 \int_0^{4-x^2} \int_{x^2}^{4-z} f(x, y, z) \, dy \, dz \, dx$
 - **e.** $\int_0^2 \int_{x^2}^4 \int_0^{4-y} f(x,y,z) \, dz \, dy \, dx$

- **6**. Find the area of one petal of the 8 petaled daisy $r = \sin(4\theta)$.
 - **a**. $\frac{\pi}{2}$
 - **b**. $\frac{\pi}{4}$
 - c. $\frac{\pi}{8}$
 - **d**. $\frac{\pi}{16}$
 - **e**. $\frac{\pi}{32}$

- 7. Find the mass of the solid between the paraboloids $z = x^2 + y^2$ and $z = 8 x^2 y^2$ if the volume density is $\rho = z$.
 - **a**. 64π
 - **b**. 32π
 - **c**. 16π
 - **d**. 8π
 - **e**. 4π

- **8.** Compute $\iiint (x^2 + y^2) z dV$ over the solid hemisphere $0 \le \sqrt{x^2 + y^2 + z^2} \le 2$
 - **a**. 0
 - **b**. $\frac{8}{3}\pi$
 - **c**. $\frac{16}{3}\pi$
 - **d**. $\frac{64}{9}\pi$
 - **e**. 2π

9. Which integral gives the arclength of the ellipse $\vec{r}(\theta) = (6\cos\theta, 3\sin\theta, 3\sin\theta)$?

a.
$$\int_{0}^{2\pi} 3\sqrt{2 + 2\sin^2\theta} \ d\theta$$

$$\mathbf{b.} \ \int_0^{2\pi} 3\sqrt{4 + 2\cos^2\theta} \ d\theta$$

$$\mathbf{c.} \int_0^{2\pi} 3\sqrt{2 + 2\cos^2\theta} \ d\theta$$

d.
$$\int_0^{2\pi} \sqrt{2} (3 + 3\sin^2\theta) d\theta$$

$$e. \int_0^{2\pi} \sqrt{54} \ d\theta$$

10. A helical thermocouple whose shape is the curve $\vec{r}(t) = (3\cos t, 3\sin t, 4t)$ for $0 \le t \le 4\pi$ is placed in a pot of water where the temperature is $T = (41 + x^2 + y^2 + z)^{\circ}$ C. Find the average temperature of the water as measured by the thermocouple.

HINT:
$$f_{\text{ave}} = \frac{\int f ds}{\int ds}$$

a.
$$\frac{173}{4} + 8\pi$$

b.
$$50 + 16\pi$$

c.
$$1000\pi + 160\pi^2$$

d.
$$250 + 40\pi$$

e.
$$50 + 8\pi$$

- **11.** Find a scalar potential, f(x,y,z), for $\vec{F}(x,y,z) = (2xy^2 + 2x + 2xz, 2x^2y 3z, x^2 + 3z^2 3y)$. Then compute f(2,2,2) f(1,1,1).
 - **a**. 0
 - **b**. 1
 - **c**. 7
 - **d**. 23
 - **e**. 25

- **12.** If $f = x^2 + y^2 2z^2$ and $\vec{F} = (xz, yz, -z^2)$, which of the following is false?
 - $\mathbf{a}. \ \, \vec{\nabla} \times \vec{\nabla} f = \vec{0}$
 - **b**. $\vec{\nabla} \cdot \vec{\nabla} f = 0$
 - **c**. $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} \times \overrightarrow{F} = 0$
 - $\mathbf{d}. \ \, \vec{\nabla} \Big(\vec{\nabla} \boldsymbol{\cdot} \vec{F} \Big) = \vec{0}$
 - e. None of the above. They are all true.

- **13**. Compute $\iiint_C \vec{\nabla} \cdot \vec{G} dV$ for $\vec{G} = (xz, yz, z^2)$ over the solid cylinder $x^2 + y^2 \le 25$ with $0 \le z \le 4$.
 - **a**. 800π
 - **b**. 400π
 - **c**. 200π
 - **d**. 80π
 - **e**. 40π

14. (12 points) Compute $\iint_D x^2 dA$ over the "diamond" shaped region bounded by the curves

$$y = 1 + x^3$$
, $y = 3 + x^3$, $y = 4 - x^3$, $y = 7 - x^3$.

HINT: Define curvilinear coordinates (u, v) so that $y = u + x^3$ and $y = v - x^3$.

- **a.** (2 pts) What are the boundaries in terms of u and v?
- **b.** (3 pts) Find formulas for x and y in terms of u and v.

c. (4 pts) Find the Jacobian factor $J = \left| \frac{\partial(x,y)}{\partial(u,v)} \right|$.

- **d**. (1 pts) Express the integrand in terms of u and v.
- **e**. (2 pts) Compute the integral.

15. (28 points) Consider the elliptical region, E, in the plane z = 2 + x + y above the circle $x^2 + y^2 \le 4$ oriented upwards.

HINT: This ellipse may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 2 + r\cos\theta + r\sin\theta)$.

a. (10 pts) Find the normal vector \vec{N} to the ellipse and its length $|\vec{N}|$.

Note: \vec{N} starts hard but simplifies!

b. (3 pts) Find the surface area of the ellipse.

c. (3 pts) Find the mass of the ellipse if the surface density is $\rho = x^2 + y^2$.

d. (12 pts) If $\vec{F} = (-yz, xz, z^2)$, compute the surface integral $\iint_E \vec{\nabla} \times \vec{F} \cdot d\vec{S}$

16. (12 points) Compute $\iint_C \vec{G} \cdot d\vec{S}$ for $\vec{G} = (xz, yz, z^2)$ over the cylinder $x^2 + y^2 = 25$ for $0 \le z \le 4$ with outward normal.