Name_____

MATH 251

Exam 1B Fall 2015

Sections 511/512 (circle one)

Solutions P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-12	/60
13	/16
14	/12
15	/12
Total	/100

- **1.** If $\vec{a} = (2,-1,2)$ and $\vec{b} = (1,2,5)$, then $|\vec{a} + 2\vec{b}| =$
 - **a**. 1
 - **b**. 3
 - **c**. 5
 - **d**. 9
 - e. 13 Correct

Solution:
$$|\vec{a} + 2\vec{b}| = |(4,3,12)| = \sqrt{16+9+144} = 13$$

- 2. The plot at the right is the contour plot of which function? HINT: Where is the level set with value 0?
 - **a**. $\sin(x)\cos(y)$
 - **b**. $\sin(x)\sin(y)$
 - **c**. cos(x)cos(y) Correct
 - **d**. $\cos(x)\sin(y)$
 - **e**. $\sin(xy)$

Solution: There are level sets at $x = \frac{\pi}{2}$ and $y = \frac{\pi}{2}$ but not x = 0 nor y = 0. So it must have a $\cos(x)$ and $\cos(y)$ factors but not $\sin(x)$ or $\sin(y)$ or $\sin(xy)$ factors.

3. Suppose $proj_{\vec{v}}\vec{u} = (3,1)$. Which of the following is **inconsistent** with this fact?

a.
$$proj_{\vec{v}}\vec{u} = (2, -6)$$

b.
$$proj_{\perp \vec{v}} \vec{u} = (-2, 5)$$
 Correct

c.
$$\vec{u} = (4, -2)$$

d.
$$\vec{v} = (6,2)$$

e.
$$\vec{v} = (-3, -1)$$

Solution: $proj_{\vec{v}}\vec{u}$ must be parallel to \vec{v} , and (6,2) and (-3,-1) are. $proj_{\vec{v}}\vec{u}$ must be perpendicular to $proj_{\perp\vec{v}}\vec{u}$, and (2,-6) is but (-2,5) is not because $(-2,5) \cdot (3,1) = -1 \neq 0$.

4. Find the asymptotes of the hyperbola $4(x-2)^2 - 9(y-3)^2 = 36$.

a.
$$y = 2 \pm \frac{3}{2}(x-3)$$

b.
$$y = 2 \pm \frac{2}{3}(x-3)$$

c.
$$y = 3 \pm \frac{3}{2}(x-2)$$

d.
$$y = 3 \pm \frac{2}{3}(x-2)$$
 Correct

e.
$$y = -3 \pm \frac{2}{3}(x+2)$$

Solution: In standard form the hyperbola is $\frac{(x-2)^2}{9} - \frac{(y-3)^2}{4} = 1$. The asymptotes are the cross $\frac{(x-2)^2}{9} - \frac{(y-3)^2}{4} = 0$. We solve:

$$\frac{(y-3)^2}{4} = \frac{(x-2)^2}{9} \qquad (y-3)^2 = \frac{4}{9}(x-2)^2 \qquad y-3 = \pm \frac{2}{3}(x-2) \qquad y = 3 \pm \frac{2}{3}(x-2)$$

5. The plot at the right is the graph of which polar curve?

a.
$$r = 2 + 2\cos\theta$$

b.
$$r = 2 - 2\cos\theta$$

c.
$$r = 2 + 2\sin\theta$$
 Correct

$$\mathbf{d.} \quad r = 2 - 2\sin\theta$$

Solution: r = 4 at $\theta = \frac{\pi}{2}$ which is equation (c).

- **6.** If \vec{u} points SOUTHEAST and \vec{v} points NORTH, where does $\vec{u} \times \vec{v}$ point?
 - a. UP Correct
 - b. DOWN
 - c. SOUTHWEST
 - d. WEST
 - e. NORTHEAST

Solution: Point the fingers of your right hand pointing SOUTHEAST with your palm facing NORTH. Your thumb points UP.

- 7. Find the plane through the points A = (2,3,4), B = (1,3,5) and C = (2,1,5). Its z-intercept is:
 - **a**. 0
 - **b**. 5
 - **c**. 10
 - **d**. 15
 - **e**. $\frac{15}{2}$ Correct

Solution:
$$\vec{u} = \overrightarrow{AB} = (-1,0,1)$$
 $\vec{v} = \overrightarrow{AC} = (0,-2,1)$ $\vec{N} = \vec{u} \times \vec{v} = \begin{vmatrix} i & j & k \\ -1 & 0 & 1 \\ 0 & -2 & 1 \end{vmatrix} = (2,1,2)$ $\vec{N} \cdot X = \vec{N} \cdot A$ $2x + y + 2z = 2 \cdot 2 + 3 + 2 \cdot 4 = 15$ z-intercept $= \frac{15}{2}$

- 8. Compute $\lim_{h\to 0} \frac{(2x+3y+3h)^2-(2x+3y)^2}{h}$
 - **a**. 2x + 3y
 - **b**. 4x + 6y
 - **c**. 6x + 9y
 - **d**. 8x + 12y
 - e. 12x + 18y Correct

Solution: $\frac{\partial}{\partial y}(2x+3y)^2 = 2(2x+3y)3 = 12x+18y$

- **9.** Find the plane tangent to the graph of $z = x^3 e^{2y}$ at (2,1). The z-intercept is
 - **a**. $-32e^2$ Correct
 - **b**. $-8e^2$
 - **c**. 0
 - **d**. $8e^2$
 - **e**. $32e^2$

$$f(x,y) = x^3 e^{2y} \qquad f(2,1) = 8e^2 \qquad z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1)$$
Solution: $f_x(x,y) = 3x^2 e^{2y} \qquad f_x(2,1) = 12e^2 \qquad = 8e^2 + 12e^2(x-2) + 16e^2(y-1)$

$$f_y(x,y) = 2x^3 e^{2y} \qquad f_y(2,1) = 16e^2 \qquad = 12e^2x + 16e^2y - 32e^2 \qquad c = -32e^2$$

- **10.** If T(3,2) = 4 and $\frac{\partial T}{\partial x}(3,2) = -0.4$ and $\frac{\partial T}{\partial y}(3,2) = 0.2$, estimate T(2.8,2.3).
 - **a**. 3.7
 - **b**. 3.8
 - **c**. 3.86
 - **d**. 3.9
 - e. 4.14 Correct

Solution: The linear approximation says:

$$T(x,y) \approx T_{tan}(x,y) = T(a,b) + T_x(a,b)(x-a) + T_y(a,b)(y-b)$$

Here $(x,y) = (2.8,2.3)$ and $(a,b) = (3,2)$. So $T(2.8,2.3) \approx T(3,2) + T_x(3,2)(-.2) + T_y(3,2)(.3) = 4 - 0.4(-.2) + 0.2(.3) = 4.14$

11. A semicircle sits on top of a rectangle of width 2r and height h. If the radius increases from $3 \, \text{cm}$ to $3.03 \, \text{cm}$ while the height decreases from $4 \, \text{cm}$ to $3.98 \, \text{cm}$, use the linear approximation to determine whether the area increases or decreases and by how much.

- **a.** increases by $0.09\pi 0.12$
- **b**. increases by $0.09\pi + 0.12$ Correct
- **c**. increases by $0.09\pi + 0.36$
- **d**. decreases by $0.09\pi + 0.36$
- **e**. decreases by $0.09\pi + 0.12$

Solution:
$$A = 2rh + \frac{1}{2}\pi r^2$$

$$\Delta A \approx dA = \frac{\partial A}{\partial r} dr + \frac{\partial A}{\partial h} dh = (2h + \pi r) dr + (2r) dh$$
$$= (2 \cdot 4 + \pi \cdot 3)(.03) + (2 \cdot 3)(-.02) = 0.09\pi + 0.12 > 0 \quad \text{increases}$$

- **12**. The brightness of a candle at the origin seen from the point (x,y,z) is $B = \frac{1}{x^2 + y^2 + z^2}$. A moth is at $\vec{r} = (-1,2,2)$ and has velocity $\vec{v} = (3,2,1)$. What is the rate of change of the brightness as seen by the moth?
 - **a**. $-\frac{2}{3}$
 - **b**. $-\frac{2}{27}$ Correct
 - **c**. $-\frac{2}{81}$
 - **d**. $-\frac{3}{4}$
 - **e**. $\frac{15}{16}$

Solution:

$$\frac{dB}{dt} = \frac{\partial B}{\partial x} \frac{dx}{dt} + \frac{\partial B}{\partial y} \frac{dy}{dt} + \frac{\partial B}{\partial z} \frac{dz}{dt} = \frac{-2x}{(x^2 + y^2 + z^2)^2} v_1 + \frac{-2y}{(x^2 + y^2 + z^2)^2} v_2 + \frac{-2z}{(x^2 + y^2 + z^2)^2} v_3$$

$$= \frac{-2(-1)}{(9)^2} 3 + \frac{-2(2)}{(9)^2} 2 + \frac{-2(2)}{(9)^2} 1 = -\frac{2}{27}$$

- **13**. (16 points) For the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ compute each of the following:
 - **a**. velocity \vec{v}

Solution:
$$\vec{v} = \left(\frac{2}{3}, 2t, 3t^2\right)$$

b. speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.

Solution:
$$|\vec{v}| = \sqrt{\frac{4}{9} + 4t^2 + 9t^4} = \frac{2}{3} + 3t^2$$

c. arc length $L = \int_{(0,0,0)}^{(2,9,27)} ds$

Solution:
$$L = \int_0^3 |\vec{v}| dt = \int_0^3 \left(\frac{2}{3} + 3t^2\right) dt = \left[\frac{2}{3}t + t^3\right]_0^3 = 2 + 27 = 29$$

d. acceleration \vec{a}

Solution:
$$\vec{a} = (0, 2, 6t)$$

e. unit binormal \hat{B}

Solution:
$$\vec{v} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{2}{3} & 2t & 3t^2 \\ 0 & 2 & 6t \end{vmatrix} = \hat{i}(12t^2 - 6t^2) - \hat{j}(4t) + \hat{k}(\frac{4}{3})$$
$$= (6t^2, -4t, \frac{4}{3})$$
$$|\vec{v} \times \vec{a}| = \sqrt{36t^4 + 16t^2 + \frac{16}{9}} = 6t^2 + \frac{4}{3} = \frac{2(9t^2 + 2)}{3}$$

$$|\vec{v} \times \vec{a}| = \sqrt{36t^4 + 16t^2 + \frac{16}{9}} = 6t^2 + \frac{4}{3} = \frac{-(7)^4 + 1}{3}$$

$$\hat{B} = \frac{\vec{v} \times \vec{a}}{|\vec{v} \times \vec{a}|} = \frac{3}{2(9t^2 + 2)} \left(6t^2, -4t, \frac{4}{3} \right) = \left(\frac{9t^2}{9t^2 + 2}, \frac{-6t}{9t^2 + 2}, \frac{2}{9t^2 + 2} \right)$$

f. tangential acceleration a_7

Solution:
$$a_T = \frac{d|\vec{v}|}{dt} = \frac{d}{dt} \left(\frac{2}{3} + 3t^2\right) = 6t$$

14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ between (0,0,0) and (2,9,27). Find the mass of the wire if the linear mass density is $\rho = yz$. Don't simplify the answer.

Solution:
$$\vec{v} = \left(\frac{2}{3}, 2t, 3t^2\right)$$
 $|\vec{v}| = \frac{2}{3} + 3t^2$ $\rho = yz = (t^2)(t^3) = t^5$

$$M = \int_{(0,0,0)}^{(2,9,27)} \rho \, ds = \int_0^3 yz |\vec{v}| \, dt = \int_0^3 t^5 \left(\frac{2}{3} + 3t^2\right) dt = \int_0^3 \left(\frac{2}{3}t^5 + 3t^7\right) dt = \left[\frac{t^6}{9} + \frac{3t^8}{8}\right]_0^3$$

$$= \left(3^4 + \frac{3^9}{8}\right) = \frac{20331}{8}$$

15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t) = \left(\frac{2}{3}t, t^2, t^3\right)$ between (0,0,0) and (2,9,27) under the action of the force $\vec{F} = (3z,2y,x)$. Find the work done by the force.

Solution:
$$\vec{F} = (3z, 2y, x) = \left(3t^3, 2t^2, \frac{2}{3}t\right)$$
 $\vec{v} = \left(\frac{2}{3}, 2t, 3t^2\right)$
 $\vec{F} \cdot \vec{v} = 3t^3 \frac{2}{3} + 2t^2 2t + \frac{2}{3}t 3t^2 = 8t^3$
 $W = \int_{(0,0,0)}^{(2,9,27)} \vec{F} \cdot d\vec{s} = \int_0^3 \vec{F} \cdot \vec{v} dt = \int_0^3 8t^3 dt = \left[2t^4\right]_0^3 = 2 \cdot 81 = 162$