Name_____

MATH 251

Exam 1C Fall 2015

Sections 511/512 (circle one)

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-12	/60
13	/16
14	/12
15	/12
Total	/100

- **1.** If $\vec{a} = (2, -6, -2)$ and $\vec{b} = (-1, -2, 1)$, then $|\vec{a} 2\vec{b}| =$
 - **a**. 1
 - **b**. 3
 - **c**. 5
 - **d**. 6
 - **e**. 13

2. The plot at the right is the contour plot of which function? HINT: Where is the level set with value 0?

- **b**. $\sin(x)\sin(y)$
- **c**. $\cos(x)\cos(y)$
- **d**. $\cos(x)\sin(y)$
- **e**. $\sin(xy)$

3. Find the projection of the vector $\vec{u} = (1,1,3)$ onto the vector $\vec{v} = (2,1,-2)$ and is the angle between these vectors acute or obtuse?

a.
$$\left(\frac{-1}{11}, \frac{-1}{11}, \frac{-3}{11}\right)$$
, obtuse

b.
$$\left(\frac{-1}{11}, \frac{-1}{11}, \frac{-3}{11}\right)$$
, acute

c.
$$\left(\frac{-2}{3}, \frac{-1}{3}, \frac{2}{3}\right)$$
, obtuse

d.
$$\left(\frac{-2}{3}, \frac{-1}{3}, \frac{2}{3}\right)$$
, acute

e.
$$\left(\frac{-2}{11}, \frac{-1}{11}, \frac{2}{11}\right)$$
, obtuse

4. Find the asymptotes of the hyperbola $4(x-3)^2 - 9(y-2)^2 = 36$.

a.
$$y = 2 \pm \frac{3}{2}(x-3)$$

b.
$$y = 2 \pm \frac{2}{3}(x-3)$$

c.
$$y = 3 \pm \frac{3}{2}(x-2)$$

d.
$$y = 3 \pm \frac{2}{3}(x-2)$$

e.
$$y = -3 \pm \frac{2}{3}(x+2)$$

5. The plot at the right is the graph of which polar curve?

b.
$$r = \sin(2\theta)$$

c.
$$r = \cos(4\theta)$$

d.
$$r = \sin(4\theta)$$

- **6**. Find the volume of the parallelepiped with edge vectors $\vec{u} = (1,-1,1), \vec{v} = (2,1,0), \text{ and } \vec{w} = (0,1,-2).$
 - **a**. -8
 - **b**. -4
 - **c**. 4
 - **d**. 6
 - **e**. 8

- **7**. Find the line through the points A = (8,4,-6) and B = (10,5,-9). It passes through the *xy*-plane at:
 - **a**. (4,2,0)
 - **b**. (8,4,0)
 - **c**. (10,5,0)
 - **d**. (-8, -4, 0)
 - **e**. (-10, -5, 0)

- 8. Compute $\lim_{h\to 0} \frac{(4x+4h+3y)^2-(4x+3y)^2}{h}$
 - **a**. 4x + 3y
 - **b**. 8x + 6y
 - **c**. 16x + 12y
 - **d**. 24x + 18y
 - **e**. 32x + 24y

- **9**. Find the plane tangent to the graph of $z = x^3 e^{2y}$ at (2,0). The z-intercept is
 - **a**. -24
 - **b**. -16
 - **c**. -8
 - **d**. 8
 - **e**. 16

- **10.** If Q(2,3) = 6 and $\frac{\partial Q}{\partial x}(2,3) = 0.3$ and $\frac{\partial Q}{\partial y}(2,3) = -0.2$, estimate Q(2.2,2.7).
 - **a**. 5.88
 - **b**. 5.9
 - **c**. 6.0
 - **d**. 6.1
 - **e**. 6.12

11. A right triangle has sides a and b. If a increases from 3 cm to 3.02 cm, while b decreases from 4 cm to 3.98 cm, use the linear approximation to determine whether the hypotenuse increases or decreases and by how much.

- **a**. increases by 0.0028
- **b**. increases by 0.004
- **c**. increases by 0.028
- **d**. decreases by 0.004
- $\textbf{e}. \ \ \text{decreases by} \ 0.028$

- **12**. The oxygen density in a fish tank is given by $\rho = (x^2 + y^2)(15 z)$. Currently, a fish is at $\vec{r} = (3,4,5)$ and has velocity $\vec{v} = (3,2,1)$. What is the rate of change of the oxygen density as seen by the fish?
 - **a**. 9
 - **b**. 115
 - **c**. 315
 - **d**. 365
 - **e**. 375

Work Out: (Points indicated. Part credit possible. Show all work.)

- **13**. (16 points) For the parametric curve $\vec{r}(t) = \left(\frac{1}{2}t^2, \frac{2}{3}t^3, \frac{1}{2}t^4\right)$ compute each of the following: **a**. velocity \vec{v}
 - **b.** speed $|\vec{v}|$ HINT: The quantity inside the square root is a perfect square.
 - **c.** arc length $L = \int_{(0,0,0)}^{\left(2,\frac{16}{3},8\right)} ds$

- **d**. acceleration \vec{a}
- **e**. unit binormal \hat{B}

f. tangential acceleration a_T

14. (12 points) A wire has the shape of the parametric curve $\vec{r}(t) = \left(\frac{1}{2}t^2, \frac{2}{3}t^3, \frac{1}{2}t^4\right)$ between (0,0,0) and $\left(2,\frac{16}{3},8\right)$. Find the mass of the wire if the linear mass density is $\rho = 4xz$. Don't simplify the answer.

15. (12 points) A mass slides along a wire which has the shape of the parametric curve $\vec{r}(t) = \left(\frac{1}{2}t^2, \frac{2}{3}t^3, \frac{1}{2}t^4\right)$ between (0,0,0) and $\left(2,\frac{16}{3},8\right)$ under the action of the force $\vec{F} = (4z,3y,2x)$. Find the work done by the force.