Name_____

MATH 251

Exam 2A Fall 2015

Sections 511/512 (circle one)

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-9	/45
10	/30
11	/15
12	/15
Total	/105

- 1. Find the volume below the surface z = x + 2y above the region in the xy-plane between $y = x^2$ and y = 3x.
 - **a**. $\frac{-71}{20}$
 - **b**. $\frac{71}{20}$
 - **c**. $\frac{972}{5}$
 - **d**. $\frac{783}{20}$
 - **e**. $\frac{1944}{5}$
- **2**. The temperature on a hot plate with dimensions $-4\pi \le x \le 4\pi$ and $0 \le y \le 6$ is $T = x^2y + \cos^2 x$. Find the average temperature.
 - **a**. 24π
 - **b**. $768\pi^3$
 - **c**. $768\pi^3 + 24\pi$
 - **d.** $16\pi^2 + \frac{1}{2}$
 - **e**. $16\pi^2$

- **3**. Find the centroid of the region above $y = 2x^2$ below y = 18.
 - **a**. $\left(0, \frac{27}{5}\right)$
 - **b**. $(0, \frac{36}{5})$
 - **c**. $\left(0, \frac{54}{5}\right)$
 - **d**. $\left(0, \frac{1944}{5}\right)$
 - **e**. $\left(0, \frac{3888}{5}\right)$

4. Find all critical points of the function $f(x,y) = 4x^2 + 9y^2 + \frac{432}{xy}$. Select from: A = (2,3) B = (-2,3) C = (2,-3) D = (-2,-3)

$$A = (2,3)$$

$$B=(-2,3)$$

$$C = (2, -3)$$

$$D = (-2, -3)$$

$$E = (3,2)$$
 $F = (-3,2)$ $G = (3,-2)$ $H = (-3,-2)$

$$G = (3, -2)$$

$$H = (-3, -2)$$

Note
$$432 = 2^4 3^3$$

- **a**. A,B,C,D
- **b**. E, F, G, H
- $\mathbf{c}. A, D$
- $\mathbf{d}. \ B, C$
- e. E,H

- 5. Select all of the following statements which are consistent with this countour plot?
 - A. There is a local maximum at (1,1).
 - B. There is a local minimum at (1,1).
 - C. There is a saddle point at (1,1).
 - D. There is a local maximum at (0,0).
 - E. There is a local minimum at (0,0).
 - F. There is a saddle point at (0,0).

- b. C,F
- c. C,D,E
- d. A,B,F

- **6**. The function $f = \frac{4}{x} \frac{2}{y} xy$ has a critical point at (x, y) = (2, -1). Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

7. Find the mass of the $\frac{1}{8}$ of the circle

$$x^2 + y^2 \le 9 \qquad \text{for} \qquad 0 \le y \le x$$

$$0 \le y \le x$$

if the surface density is $\delta = x$.

- **a**. 9
- **c**. $9\sqrt{2}$

- **8**. Find the *y*-component of the center of mass of the $\frac{1}{8}$ of the circle $x^2 + y^2 \le 9$ for $0 \le y \le x$ if the surface density is $\delta = x$.
 - **a**. $\frac{9\sqrt{2}}{16}$
 - **b**. $\frac{9\sqrt{2}}{8}$
 - **c**. $\frac{81}{16}$

9. Compute $\iint y dA$ over the "diamond" shaped region in the first quadrant bounded by

$$xy^2 = 8 \qquad xy^2 = 27 \qquad y = x \qquad y = 8x$$

HINTS: Use the coordinates

$$x = \frac{u}{v^2}$$
 $y = uv$

Find the boundaries and Jacobian.

- **b**. 80 ln 2
- **c**. 15 ln 3
- **d**. 65 ln 2
- **e**. 65 ln 3

10. (30 points) Consider the piece of the paraboloid surface $z = 2x^2 + 2y^2$ for $z \le 18$.

- Find the mass of the paraboloid if the surface mass density is $\delta = \frac{3z}{x^2 + y^2}$.
- Find the flux of the electric field $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$ down and out of the paraboloid.

Parametrize the surface as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 2r^2)$ and follow these steps:

a. Find the coordinate tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

b. Find the normal vector and check its orientation.

$$\vec{N} =$$

c. Find the length of the normal vector.

$$|\vec{N}| =$$

d. Evaluate the density $\delta = \frac{3z}{x^2 + y^2}$ on the paraboloid.

$$\delta(\vec{R}(r,\theta)) =$$

e. Compute the mass.

$$M =$$

f. Evaluate the electric field $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$ on the paraboloid.

$$\vec{E}(\vec{R}(r,\theta)) =$$

g. Compute the flux.

$$\iint \vec{E} \cdot d\vec{S} =$$

11. (15 points) Find the volume of the largest rectangular solid which sits on the xy-plane and has its upper 4 vertices on the paraboloid $z + x^2 + 4y^2 = 64$.

12. (15 points) Draw the region of integration and compute $\int_0^4 \int_{\sqrt{y}}^2 \sqrt{x^3 + 1} \, dx \, dy$.