Name_____

MATH 251

Exam 2B Fall 2015

Sections 511/512 (circle one)

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-9	/45
10	/30
11	/15
12	/15
Total	/105

- 1. Find the volume below the surface z = 3x + y above the region in the xy-plane between $y = x^2$ and y = 2x.
 - **a**. −32
 - **b**. 32
 - **c**. $\frac{32}{15}$
 - **d**. $\frac{92}{15}$
 - **e**. $\frac{116}{15}$
- **2**. The temperature on a circular hot plate with radius 2 is $T = x^2 + 4$. Find the average temperature.
 - **a**. 10π
 - **b**. 20π
 - **c**. $4\pi^2 + 5\pi$
 - **d**. $\frac{4\pi + 5}{4}$
 - **e**. 5

- **3**. Find the centroid of the region above $y = 3x^2$ below y = 12.
 - **a**. $\left(0, \frac{27}{5}\right)$
 - **b**. $(0, \frac{36}{5})$
 - **c**. $\left(0, \frac{54}{5}\right)$
 - **d**. $\left(0, \frac{1944}{5}\right)$
 - **e**. $\left(0, \frac{3888}{5}\right)$

- **4**. Find all critical points of the function $f(x,y) = 9x^2 + 4y^2 + \frac{432}{xy}$. Select from: A = (2,3) B = (-2,3) C = (2,-3) D = (-2,-3)

- E = (3,2) F = (-3,2) G = (3,-2) H = (-3,-2)

- Note $432 = 2^4 3^3$
- **a**. A,B,C,D
- **b**. E, F, G, H
- $\mathbf{c}. A, D$
- $\mathbf{d}. \ B, C$
- e. E,H

- 5. Select all of the following statements which are consistent with this countour plot?
 - A. There is a local maximum at (1,0).
 - B. There is a local minimum at (1,0).
 - C. There is a saddle point at (1,0).
 - D. There is a local maximum at (0,0).
 - E. There is a local minimum at (0,0).
 - F. There is a saddle point at (0,0).

- b. C,F
- c. A,B,F
- d. C,D,E

- **6**. The function $f = \frac{4}{x} + \frac{2}{y} + xy$ has a critical point at (x, y) = (2, 1). Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - b. Local Maximum
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

Find the mass of the region inside the upper half of the cardioid

$$r = 2 + 2\cos\theta$$

if the surface density is $\delta = y$.

- **a**. $\frac{16}{3}$
- **b**. $\frac{32}{3}$
- **c**. 4
- **d**. $\frac{16}{9}$
- **e**. $\frac{32}{9}$

- **8**. Find the *x*-component of the center of mass of the region inside the upper half of the cardioid $r = 2 + 2\cos\theta$ if the surface density is $\delta = y$.
 - **a**. $\frac{4}{5}$
 - **b**. $\frac{6}{5}$
 - **c**. $\frac{8}{5}$
 - **d**. $\frac{32}{5}$
 - **e**. $\frac{256}{15}$

9. Compute $\iint x dA$ over the "diamond" shaped region in the first quadrant bounded by

$$x^2y = 16$$
 $x^2y = 81$ $y = x^2$ $y = 16x^2$

HINTS: Use the coordinates

$$x = \frac{u}{v} \qquad y = u^2 v^2$$

Find the boundaries and Jacobian.

- **a**. 19 ln 2
- **b**. 80 ln 2
- **c**. 15 ln 3
- **d**. 65 ln 2
- **e**. 65 ln 3

10. (30 points) Consider the piece of the paraboloid surface $z = 12 - 3x^2 - 3y^2$ above the *xy*-plane.

- Find the mass of the paraboloid if the surface mass density is $\delta = z + 3x^2 + 3y^2$.
- Find the flux of the electric field $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$ down into the paraboloid.

Parametrize the surface as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 12 - 3r^2)$ and follow these steps:

a. Find the coordinate tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

b. Find the normal vector and check its orientation.

$$\vec{N} =$$

c. Find the length of the normal vector.

$$|\vec{N}| =$$

d. Evaluate the density $\delta = z + 3x^2 + 3y^2$ on the paraboloid.

$$\delta\!\left(\overrightarrow{R}(r,\theta)\right) =$$

e. Compute the mass.

$$M =$$

f. Evaluate the electric field $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$ on the paraboloid.

$$\vec{E}(\vec{R}(r,\theta)) =$$

g. Compute the flux.

$$\iint \vec{E} \cdot d\vec{S} =$$

11. (15 points) Find the point in the first octant on the surface, $z(x+y) = 2\sqrt{2}$, closest to the origin.

12. (15 points) Draw the region of integration and compute $\int_0^4 \int_{\sqrt{x}}^2 \sqrt{y^3 + 1} \, dy \, dx$.