Name\_\_\_\_\_

**MATH 251** 

Exam 2C Fall 2015

Sections 511/512 (circle one)

P. Yasskin

Multiple Choice: (5 points each. No part credit.)

| 1-9   | /45  |
|-------|------|
| 10    | /30  |
| 11    | /15  |
| 12    | /15  |
| Total | /105 |

- 1. Find the volume below the surface z = x + 3y above the region in the xy-plane between  $y = x^2$  and y = 2x.
  - **a**. −32
  - **b**. 32
  - **c**.  $\frac{32}{15}$
  - **d**.  $\frac{92}{15}$
  - **e**.  $\frac{116}{15}$
- **2**. The temperature on a triangular hot plate with vertices at (0,0),(0,4) and (2,0) is T=xy. Find the average temperature.
  - **a**.  $\frac{1}{3}$
  - **b**.  $\frac{2}{3}$
  - **c**. 1
  - **d**.  $\frac{4}{3}$
  - **e**.  $\frac{8}{3}$

- **3**. Find the centroid of the region above  $y = 5x^2$  below y = 20.
  - **a**. (0,8)
  - **b**. (0,10)
  - $\mathbf{c}$ . (0,12)
  - **d**. (0,15)
  - **e**. (0, 16)

- **4.** Find all critical points of the function  $f(x,y) = 4x^2 + 9y^2 + \frac{432}{xy}$ . Select from: A = (3,2) B = (-3,2) C = (3,-2) D = (-3,-2)

- E = (2,3) F = (-2,3) G = (2,-3) H = (-2,-3)

- Note  $432 = 2^4 3^3$
- **a**. A,B,C,D
- **b**. E, F, G, H
- **c**. B, C
- $\mathbf{d}. A, D$
- e. E, H

- 5. Select all of the following statements which are consistent with this countour plot?
  - A. There is a local maximum at (0,0).
  - B. There is a local minimum at (0,0).
  - C. There is a saddle point at (0,0).
  - D. There is a local maximum at (1,1).
  - E. There is a local minimum at (1,1).
  - F. There is a saddle point at (1,1).



- b. C,F
- c. C,D,E
- d. A,B,F



- **6**. The function  $f = -\frac{4}{x} + \frac{2}{y} + xy$  has a critical point at (x,y) = (2,-1). Use the Second Derivative Test to classify this critical point.
  - a. Local Minimum
  - b. Local Maximum
  - c. Inflection Point
  - d. Saddle Point
  - e. Test Fails

Find the mass of the region in the upper half of the circle



if the surface density is  $\delta = y$ .



- **a**.  $\frac{1}{12}$
- **b**.  $\frac{1}{9}$
- **c**.  $\frac{1}{6}$
- **d**.  $\frac{1}{3}$
- **e**.  $\frac{1}{2}$

- 8. Find the *x*-component of the center of mass of the region in the upper half of the circle  $r = \cos \theta$  if the surface density is  $\delta = y$ .
  - **a**.  $\frac{1}{24}$
  - **b**.  $\frac{1}{4}$
  - **c**.  $\frac{1}{3}$
  - **d**.  $\frac{1}{2}$
  - **e**.  $\frac{2}{3}$

9. Compute  $\iint x dA$  over the "diamond" shaped region in the first quadrant bounded by

$$x^2y = 1$$
  $x^2y = 81$   $y = x^2$   $y = 16x^2$ 

HINTS: Use the coordinates

$$x = \frac{u}{v} \qquad y = u^2 v^2$$

Find the boundaries and Jacobian.



- **b**. 80 ln 2
- **c**. 15 ln 3
- **d**. 65 ln 2
- **e**. 65 ln 3



**10**. (30 points) Consider the piece of the paraboloid surface  $z = 18 - 2x^2 - 2y^2$  above the *xy*-plane.



- Find the mass of the paraboloid if the surface mass density is  $\delta = z + 2x^2 + 2y^2$ .
- Find the flux of the electric field  $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$  down into the paraboloid.

Parametrize the surface as  $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, 18 - 2r^2)$  and follow these steps:

a. Find the coordinate tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

**b**. Find the normal vector and check its orientation.

$$\vec{N} =$$

c. Find the length of the normal vector.

$$|\vec{N}| =$$

**d**. Evaluate the density  $\delta = z + 2x^2 + 2y^2$  on the paraboloid.

$$\delta(\vec{R}(r,\theta)) =$$

e. Compute the mass.

$$M =$$

f. Evaluate the electric field  $\vec{E} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0\right)$  on the paraboloid.

$$\vec{E}(\vec{R}(r,\theta)) =$$

g. Compute the flux.

$$\iint \vec{E} \cdot d\vec{S} =$$

11. (15 points) A cardboard box without a lid needs to hold  $4000 \text{ cm}^3$ . Find the dimensions of the box which uses the least cardboard.

**12**. (15 points) Draw the region of integration and compute  $\int_0^3 \int_y^3 y \sqrt{x^3 + 9} \, dx \, dy$ .