Name	ID		
MATH 251	Final Exam	Fall 2015	
Sections 511	Version B	P. Yasskin	
Multiple Choice: (5 points each. No part credit.)			

1-10	/50
11	/30
12	/5
13	/20
Total	/105

- **1**. A triangle has vertices A = (3,2,4), B = (3,4,6) and C = (6,-1,4). Find the angle at A.
 - **a**. 30°
 - **b**. 45°
 - **c**. 60°
 - **d**. 120°
 - **e**. 150°

- **2**. Find the tangent plane to the graph of $z = x^2y + y^3x^3$ at (x,y) = (2,1). Where does it cross the *z*-axis?
 - **a**. −72
 - **b**. -48
 - **c**. −12
 - **d**. 12
 - **e**. 48

3. Find the tangent plane to the graph of hyperbolic paraboloid

$$9(x-3)^2 - 4(y-1)^2 - 4(z-2)^2 = 1$$

- at the point (2,2,3). Where does it cross the *z*-axis?
- **a**. $\frac{19}{2}$
- **b**. 19
- **c**. 0
- **d**. -19
- **e**. $-\frac{19}{2}$

- **4.** Sketch the region of integration for the integral $\int_0^{2\sqrt{2}} \int_x^{\sqrt{16-x^2}} e^{x^2+y^2} dy dx$ in problem (12), then select its value here:
 - **a**. $\frac{\pi}{4}(e^{16}-1)$
 - **b**. $\frac{\pi}{4}(e^8-1)$
 - **c**. $\frac{\pi}{8}(e^{16}-1)$
 - **d**. $\frac{\pi}{8}(e^8-1)$
 - **e**. $\frac{\pi}{16}(e^{16}-1)$

- **5**. Find the line perpendicular to the curve $x^3 + y^3 xy = 7$ at the point (2,1).
 - **a**. (11-2t,1-t)
 - **b**. (2+t, 1+11t)
 - **c**. (2+t, 1-11t)
 - **d**. (2+11t, 1-t)
 - **e**. (2+11t,1+t)

6. Consider the surface of the cone given in cylindrical coordinates by z = 4 - r above the *xy*-plane. It may be parametrized by

$$R(r,\theta) = (r\cos\theta, r\sin\theta, 4 - r).$$

- Find the *z*-component of its centroid.
 - **a**. $\frac{1}{3}$
- **b**. $\frac{2}{3}$
- **c**. $\frac{4}{3}$
- **d**. $\frac{32\sqrt{2}\pi}{3}$
- **e**. $16\sqrt{2} \pi$

- 7. Death star is basically a spherical shell with a hole cut out of one end, which we will take as centered at the south pole. In spherical coordinates, it fills the region between $1 \le \rho \le 4$ and $0 \le \phi \le \frac{2\pi}{3}$. Find the volume.
 - **a**. $V = 21\pi$
 - **b**. $V = 63\pi$
 - **c**. $V = 84\pi$
 - **d**. $V = 105\pi$
 - **e**. $V = 126\pi$

8. Compute $\oint_{\partial R} \vec{\nabla} f \cdot d\vec{s}$ for $f = ye^x$

counterclockwise around

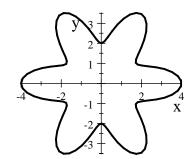
the polar curve

$$r = 3 + \cos(6\theta)$$

shown at the right.

Hint: Use a Theorem.

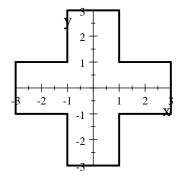
- **b**. $3e^6$
- **c**. $6e^6 3e^3$
- **d**. $3e^3 6e^6$
- **e**. 0



9. Compute $\oint_{\partial P} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (3x^3 + 5y, 7x - 4y^4)$

counterclockwise around the complete boundary of the plus sign shown at the right.

Hint: Use a Theorem.



- **a**. -40
- **b**. -20
- **c**. 20
- **d**. 40
- **e**. 240

10. Compute $\iint_P \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the paraboloid $z = 4(x^2 + y^2)$ for $z \le 16$ oriented down and out for $\vec{F} = (y\sqrt{z}, -x\sqrt{z}, \sqrt{z})$.

Hint: Use a Theorem.

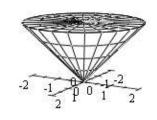
- **a**. 64
- **b**. 32π
- **c**. 16
- **d**. 8π
- **e**. 4

11. (30 points) Verify Gauss' Theorem $\iiint\limits_V \vec{\nabla} \cdot \vec{F} \ dV = \iint\limits_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (x^3z, y^3z, (x^2 + y^2)^2)$ and the solid

between the cone $z = \sqrt{x^2 + y^2}$ and the plane z = 2.

Be careful with orientations. Use the following steps:



Left Hand Side:

a. Compute the divergence:

$$\overrightarrow{\nabla} \boldsymbol{\cdot} \overrightarrow{F} =$$

b. Express the divergence and the volume element in the appropriate coordinate system:

$$\vec{\nabla} \cdot \vec{F} =$$

$$dV =$$

c. Compute the left hand side:

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \ dV =$$

Right Hand Side:

The boundary surface consists of a cone $\ C$ and a disk $\ D$ with appropriate orientations.

d. Parametrize the disk *D*:

$$\vec{R}(r,\theta) =$$

e. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

f. Compute the normal vector:

$$\vec{N} =$$

g. Evaluate $\vec{F} = (x^3z, y^3z, (x^2 + y^2)^2)$ on the disk:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

h. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

i. Compute the flux through D:

$$\iint\limits_{D} \overrightarrow{F} \cdot d\overrightarrow{S} =$$

The cone C may be parametrized by $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

j. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

k. Compute the normal vector:

$$\vec{N} =$$

I. Evaluate $\vec{F} = (x^3z, y^3z, (x^2 + y^2)^2)$ on the cone:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

m. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

n. Compute the flux through *C*:

Hints: Use these integrals as needed, without proof:

$$\int_{0}^{2\pi} \sin^{2}\theta \, d\theta = \int_{0}^{2\pi} \cos^{2}\theta \, d\theta = \pi \qquad \int_{0}^{2\pi} \sin^{4}\theta \, d\theta = \int_{0}^{2\pi} \cos^{4}\theta \, d\theta = \frac{3}{4}\pi \qquad \int_{0}^{2\pi} \sin^{2}\theta \cos^{2}\theta \, d\theta = \frac{1}{4}\pi$$

$$\iiint_{C} \vec{F} \cdot d\vec{S} =$$

o. Compute the TOTAL right hand side:

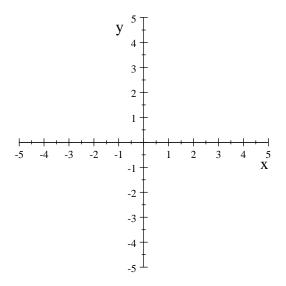
$$\iint\limits_{\partial V} \vec{F} \cdot d\vec{S} =$$

12. (5 points) Sketch the region of integration for the integral

$$\int_0^{2\sqrt{2}} \int_x^{\sqrt{16-x^2}} e^{x^2+y^2} \, dy \, dx.$$

Shade in the region.

You computed its value in problem (4).



13. (20 points) A cardboard box needs to hold 96 cm³. The cardboard for the vertical sides costs 12ϕ per cm² while the thicker bottom costs 36ϕ per cm². There is no top. What are the length, width, height and cost of the box which costs the least?