Name	ID	
MATH 251	Final Exam	Fall 2015
Sections 512	Version A	P. Yasskin

Multiple Choice: (5 points each. No part credit.)

1-10	/50
11	/30
12	/ 5
13	/20
Total	/105

- **1**. A triangle has vertices A = (2, 2, 1), B = (3, 4, 2) and C = (2, 5, 4). Find the angle at A.
 - **a**. 30°
 - **b**. 45°
 - **c**. 60°
 - **d**. 120°
 - **e**. 150°

- **2**. Find the tangent plane to the graph of $z = x^2y + y^3x^3$ at (x,y) = (2,1). Where does it cross the *z*-axis?
 - **a**. −72
 - **b**. -48
 - **c**. −12
 - **d**. 12
 - **e**. 48

3. Find the tangent plane to the graph of hyperbolic paraboloid

$$9(x-3)^2 - 4(y-1)^2 - 4(z-2)^2 = 1$$

- at the point (2,2,3). Where does it cross the *z*-axis?
- **a**. −19
- **b**. $-\frac{19}{2}$
- **c**. 0
- **d**. $\frac{19}{2}$
- **e**. 19

- **4**. Sketch the region of integration for the integral $\int_0^{\pi/4} \int_{\tan(y)}^1 \frac{1}{\arctan(x)} dx dy$ in problem (12), then select its value here:
 - **a**. $\frac{1}{2}$
 - **b**. $\frac{\pi}{4}$
 - c. $\frac{\pi}{3}$
 - d. $\frac{\pi}{2}$
 - **e**. 1

- **5**. Ham Duet is flying the Millenium Eagle through the galaxy on the path $\vec{r}(t) = (t, t^2, t^3)$. At t = 2 hours, he releases a trash pod which travels along the tangent line to the path of the Eagle with constant velocity equal to the velocity of the Eagle at time of release. Where is the trash pod 1 hours after release?
 - **a**. (3, 8, 20)
 - **b**. (3,9,27)
 - **c**. (2,4,8)
 - **d**. (1, 2, 12)
 - **e**. (5, 10, 43)

6. Consider the surface of the cone given in cylindrical coordinates by z = 4 - r above the *xy*-plane. It may be parametrized by

$$R(r,\theta) = (r\cos\theta, r\sin\theta, 4 - r).$$

- Its temperature is T = z. Find its average temperature.
 - **a**. $\frac{32\sqrt{2}\pi}{3}$
- **b**. $16\sqrt{2} \pi$
- **c**. $\frac{2}{3}$
- **d**. $\frac{4}{3}$
- **e**. $\frac{8}{3}$

- 7. Death star is basically a spherical shell with a hole cut out of one end, which we will take as centered at the south pole. In spherical coordinates, it fills the region between $1 \le \rho \le 4$ and $0 \le \phi \le \frac{2\pi}{3}$. Find the volume.
 - **a**. $V = 21\pi$
 - **b**. $V = 42\pi$
 - **c**. $V = 63\pi$
 - **d**. $V = 105\pi$
 - **e**. $V = 126\pi$

8. Compute $\oint_{\partial R} \vec{\nabla} f \cdot d\vec{s}$ for $f = xe^y$

counterclockwise around

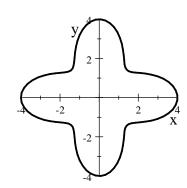
the polar curve

$$r = 3 + \cos(4\theta)$$

shown at the right.

Hint: Use a Theorem.

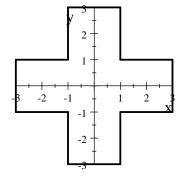
- **b**. $3e^4$
- **c**. $4e^4 3e^3$
- **d**. $3e^3 4e^4$
- **e**. 0



9. Compute $\oint_{\partial P} \vec{F} \cdot d\vec{s}$ for $\vec{F} = (4x^3 - 2y, x + 3y^4)$

counterclockwise around the complete boundary of the plus sign shown at the right.

Hint: Use a Theorem.



- **a**. 120
- **b**. 60
- **c**. 20
- **d**. -20
- **e**. -60

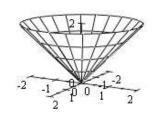
10. Compute $\iint_{\partial V} \vec{F} \cdot d\vec{S}$ over the complete surface of the hemisphere $0 \le z \le \sqrt{9 - x^2 - y^2}$ oriented outward, for $\vec{F} = \left(\frac{2}{3}x^3z, \frac{2}{3}y^3z, \frac{1}{2}z^4\right)$

Hint: Use a Theorem.

- **a**. 27π
- **b**. 54π
- **c**. 81π
- **d**. 162π
- **e**. 243π

11. (30 points) Verify Stokes' Theorem $\iint_C \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial C} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = (yz^2, -xz^2, z^3)$ and the surface of the cone $z = \sqrt{x^2 + y^2}$ for $z \le 2$, oriented down and out.



Left Hand Side:

The cone, C, may be parametrized as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$

a. Compute the tangent vectors:

$$\overrightarrow{e}_r =$$

$$\vec{e}_{\theta} =$$

b. Compute the normal vector:

$$\vec{N} =$$

c. Compute the curl of the vector field $\vec{F} = (yz^2, -xz^2, z^3)$:

$$\vec{\nabla} \times \vec{F} =$$

d. Evaluate the curl of \vec{F} on the cone:

$$\vec{\nabla} \times \vec{F} \, \Big|_{\vec{R}(r,\theta)} \, = \,$$

e. Compute the dot product of the curl of \vec{F} and the normal \vec{N} .

$$\vec{\nabla} \times \vec{F} \cdot \vec{N} =$$

f. Compute the left hand side:

$$\iint\limits_{C} \vec{\nabla} \times \vec{F} \cdot d\vec{S} =$$

Right Hand Side:

g. Parametrize the circle, ∂C :

$$\vec{r}(\theta) =$$

h. Find the tangent vector on the curve:

$$\overrightarrow{v} =$$

i. Evaluate $\vec{F} = (yz^2, -xz^2, z^3)$ on the circle:

$$\vec{F}\big|_{\vec{r}(\theta)} =$$

j. Compute the dot product of \vec{F} and the tangent vector \vec{v} :

$$\vec{F} \cdot \vec{v} =$$

k. Compute the right hand side:

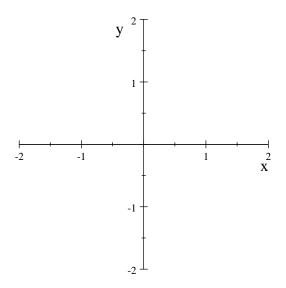
$$\int_{\partial C} \vec{F} \cdot d\vec{s} =$$

12. (5 points) Sketch the region of integration for the integral

$$\int_0^{\pi/4} \int_{\tan(y)}^1 \frac{1}{\arctan(x)} \, dx \, dy.$$

Shade in the region.

You computed its value in problem (4).



13. (20 points) A cardboard box needs to hold 18 cm^3 . The cardboard for the vertical sides costs 12ϕ per cm² while the thicker bottom costs 16ϕ per cm². There is no top. What are the length, width, height and cost of the box which costs the least?