Name_____

MATH 251

Exam 3 Version B

Fall 2018

Sections 504/505

P. Yasskin

Multiple Choice: (7 points each. No part credit.)

1-10	/70	12	/20
11	/20	Total	/110

1. Find the mass of a triangular plate with vertices (0,0), (2,0) and (2,4) if the density is $\delta = x$.

b.
$$M = 4$$

c.
$$M = 8$$

d.
$$M = \frac{8}{3}$$

e.
$$M = \frac{16}{3}$$



2. Find the *x*-component of the center of mass of a triangular plate with vertices (0,0), (2,0) and (2,4) if the density is $\delta = x$.

a.
$$\bar{x} = \frac{2}{3}$$

b.
$$\bar{x} = \frac{3}{2}$$

c.
$$\bar{x} = 8$$

$$\mathbf{d.} \ \bar{x} = 4$$

e.
$$\bar{x} = 2$$

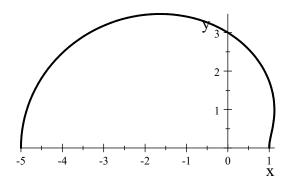
3. Find the area of the upper half of the limacon $r = 3 - 2\cos\theta$.

b.
$$A = 9\pi$$

c.
$$A = \frac{13\pi}{2}$$

d.
$$A = \frac{11\pi}{2}$$

e.
$$A = \frac{9\pi}{2}$$



4. Given: The area of the upper half of the cardioid $r = 3 - 3\cos\theta$ is $A = \frac{27}{4}\pi$. Find the *y*-component of its centroid.

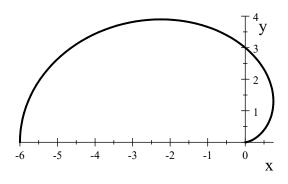
a.
$$\bar{y} = \frac{16}{3\pi}$$

b.
$$\bar{y} = \frac{3\pi}{16}$$

c.
$$\bar{y} = \frac{16}{9\pi}$$

d.
$$\bar{y} = 36$$

e.
$$\bar{y} = 12$$



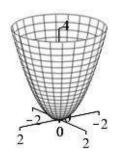
5. Given: The solid between the paraboloid $z=x^2+y^2$ and the plane z=4 has volume $V=8\pi$. Find the z-component of its centroid.

b.
$$\bar{y} = \frac{64\pi}{3}$$

c.
$$\bar{y} = \frac{8}{3}$$

d.
$$\bar{y} = \frac{8}{5}$$

e.
$$\bar{y} = \frac{16}{5}$$



6. Given: The solid between the paraboloid $z = x^2 + y^2$ and the plane z = 9 has centroid (0,0,6). If the temperature of the solid is T = 4 + z find the average temperature.

HINT: You don't need to compute any integral.

a.
$$T_{ave} = 13$$

b.
$$T_{\text{ave}} = 10$$

c.
$$T_{\text{ave}} = \frac{17}{2}$$

d.
$$T_{\text{ave}} = 7$$

e.
$$T_{ave} = 4$$

- 7. Find the volume of an ice cream cone between the cone $z = \sqrt{x^2 + y^2}$ and the upper piece of the sphere $x^2 + y^2 + z^2 = 9$.
 - **a**. $\frac{9}{2}\pi^2$
 - **b**. $\frac{9\pi}{\sqrt{2}}$
 - **c**. $\frac{18\pi}{\sqrt{2}}$
 - $\mathbf{d.} \ 9\pi \bigg(1 \frac{1}{\sqrt{2}}\bigg)$
 - **e**. $18\pi \left(1 \frac{1}{\sqrt{2}}\right)$

8. Compute $\int_0^1 \int_x^1 x e^{y^3} dy dx.$

HINT: Reverse the order of integration.

- **a**. $\frac{3e}{2}$
- **b**. $\frac{3e}{2} \frac{3}{2}$
- **c**. $\frac{e}{6}$
- **d**. $\frac{e}{6} \frac{1}{6}$

- **9**. Find the work done to push a bead along a wire in the shape of the twisted cubic $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ from (1,1,1) to (2,4,8) if the force is $\vec{F} = \langle z, 2y, x \rangle$.
 - **a**. 15
 - **b**. $\frac{45}{2}$
 - **c**. 30
 - **d**. 45
 - **e**. 56

- **10**. Find the mass of the conical **surface** $z=\sqrt{x^2+y^2}$ for $z\leq 4$ if the surface density is $\delta=z\sqrt{x^2+y^2}$. The surface may be parametrized by $\vec{R}(r,\theta)=(r\cos\theta,r\sin\theta,r)$. SUGGESTION: Do problem 11 first.
 - **a**. $M = 128\sqrt{2} \pi$
 - **b**. $M = 64\sqrt{2} \pi$
 - **c**. $M = 128\pi$
 - **d**. $M = 64\pi$
 - **e**. $M = 8\sqrt{2} \pi$

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (20 points) Find the flux $\iint \vec{F} \cdot d\vec{S}$ of the vector field $\vec{F} = \langle 11xz^2, 11yz^2, z^3 \rangle$ down and out through the conical **surface** $z = \sqrt{x^2 + y^2}$ for $z \le 4$. Follow these steps:

Paramertize the surface as $\vec{R}(r,\theta) = (r\cos\theta, r\sin\theta, r)$.

a. Compute the tangent vectors:

$$\vec{e}_r = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$$

$$\vec{e}_{\theta} = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$$

b. Compute the normal vector and check, explain and fix the orientation:

$$ec{N}=\langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$$

c. Evaluate the vector field on the surface:

$$\vec{F}(\vec{R}(r,\theta)) = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$$

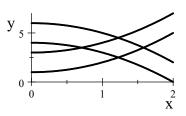
d. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

e. Compute the flux integral:

$$\iint \vec{F} \cdot d\vec{S} =$$

12. (20 points) Compute the integral $\iint xy \, dA$ over the region in the first quadrant bounded by $y = 1 + x^2$, $y = 3 + x^2$, $y = 4 - x^2$, and $y = 6 - x^2$.



a. Define the curvilinear coordinates u and v by $y = u + x^2$ and $y = v - x^2$. What are the 4 boundaries in terms of u and v?

u = _____ *v* = _____

b. Solve for x and y in terms of u and v. Express the results as a position vector.

 $\vec{R}(u,v) = \langle \underline{\hspace{1cm}}, \underline{\hspace{1cm}} \rangle$

c. Find the coordinate tangent vectors:

 $\vec{e}_u = \langle \underline{\hspace{1cm}} , \underline{\hspace{1cm}} \rangle$

 $\vec{e}_{v} = \langle \underline{\hspace{1cm}} \rangle$

d. Compute the Jacobian determinant:

$$\frac{\partial(x,y)}{\partial(u,v)} =$$

e. Compute the Jacobian factor:

J =

f. Compute the integrand:

xy =

g. Compute the integral:

 $\iint xy \, dA =$