Name_____

MATH 251 Final Version B Fall 2018

Sections 504 Solutions P. Yasskin

Multiple Choice: (6 points each. No part credit.)

1-10	/60	12	/20
11	/ 5	13	/25
		Total	/110

1. Compute $I = \int_{\partial R} (2y + 3x^2y^2) dx + (5x + 2x^3y) dy$ over the complete boundary of the triangle shown at the right traversed counterclockwise. HINT: Use a theorem.

b.
$$I = 12$$

c.
$$I = 7$$

d.
$$I = 6$$
 Correct Choice

e.
$$I = 3$$

- **Solution**: Green's Theorem says: $\int_{\partial R} P \, dx + Q \, dy = \iint_R (\partial_x Q \partial_y P) \, dA.$ We identify: $P = 2y + 3x^2y^2 \quad \text{and} \quad Q = 5x + 2x^3y. \quad \text{So} \quad \partial_x Q \partial_y P = (5 + 6x^2y) (2 + 6x^2y) = 3.$ Consequently: $I = \iint_R 3 \, dA = 3Area = 3 \cdot \frac{1}{2} \cdot b \cdot h = 3 \cdot \frac{1}{2} \cdot 2 \cdot 2 = 6$
- **2**. Compute $\int_{(1,1,1)}^{(8,4,2)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = \langle y^2 z^2, 2xyz^2, 2xy^2z \rangle$ along the curve $\vec{r}(t) = \langle t^3, t^2, t \rangle$. HINT: Find a scalar potential.

e.
$$-512$$

Solution: By inspection, a scalar potential is $f = xy^2z^2$ since $\vec{\nabla} f = \langle y^2z^2, 2xyz^2, 2xy^2z \rangle = \vec{F}$. By the Fundamental Theorem of Calculus for Curves,

$$\int_{(1,1,1)}^{(8,4,2)} \vec{F} \cdot d\vec{s} = \int_{(1,1,1)}^{(8,4,2)} \vec{\nabla} f \cdot d\vec{s} = f(8,4,2) - f(1,1,1) = 8 \cdot 4^2 \cdot 2^2 - 1 \cdot 1^2 \cdot 1^2 = 511$$

3. Compute $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the quartic surface $z = x^4 + 2x^2y^2 + y^4$ with $z \le 16$ oriented **up** and **in**, for $\vec{F} = \langle -yz, xz, z^2 \rangle$.

HINT: Use a theorem.

a. 2048π

b. 1024π

c. 512π

d. 256π

e. 128π Correct Choice

Solution: Stokes' Theorem says $\iint_{S} \vec{\nabla} \times \vec{F} \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{S}$. In cylindrical coordinates, the surface can be written as $z = (x^2 + y^2)^2 = r^4$. So its boundary is $z = r^4 = 16$ or r = 2. This is a circle which may be parametrized as $\vec{r}(\theta) = \langle 2\cos\theta, 2\sin\theta, 16\rangle$. Then $\vec{v} = \langle -2\sin\theta, 2\cos\theta, 0\rangle$ which is correctly ccw. On the circle, $\vec{F} = \langle -32\sin\theta, 32\cos\theta, 16^2\rangle$. So $\vec{F} \cdot \vec{v} = 64\sin^2\theta + 64\cos^2\theta + 0 = 64$. Then

$$\oint_{\partial S} \vec{F} \cdot d\vec{s} = \int_0^{2\pi} \vec{F} \cdot \vec{v} d\theta = \int_0^{2\pi} 64 \, d\theta = 128\pi$$

4. The two legs of a right triangle are \vec{a} and \vec{b} and the hypotenuse is \vec{c} . So $\vec{a} \perp \vec{b}$ and $\vec{c} = \vec{a} + \vec{b}$. Given that $\vec{c} = \langle 9, 9, -9 \rangle$ and the direction of \vec{a} is $\hat{a} = \left\langle \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3} \right\rangle$, find the magnitude \vec{b} .

$$\mathbf{a}. \ \left| \overrightarrow{b} \right| = 9$$

b.
$$|\vec{b}| = 9\sqrt{2}$$
 Correct Choice

c.
$$|\vec{b}| = 18$$

d.
$$|\vec{b}| = 18\sqrt{2}$$

e.
$$|\vec{b}| = 36$$

Solution: \vec{a} is the projection of \vec{c} onto \hat{a} . Since $\vec{c} \cdot \hat{a} = 6 - 3 + 6 = 9$ and $|\hat{a}| = 1$, we have:

$$\vec{a} = proj_{\hat{a}}\vec{c} = \frac{\vec{c} \cdot \hat{a}}{|\hat{a}|^2}\hat{a} = \frac{9}{1}\left\langle \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3} \right\rangle = \langle 6, -3, -6 \rangle$$

Then
$$\vec{b} = \vec{c} - \vec{a} = \langle 9, 9, -9 \rangle - \langle 6, -3, -6 \rangle = \langle 3, 12, -3 \rangle$$
. So $|\vec{b}| = \sqrt{9 + 144 + 9} = 9\sqrt{2}$.

5. An ant is walking across a frying pan where the temperature is $T = \frac{1}{12}x^3y^2$. If the ant is currently at P = (2,3), in what unit vector direction should the ant walk to reduce the temperature as fast as possible?

a.
$$\left\langle \frac{-9}{\sqrt{97}}, \frac{-4}{\sqrt{97}} \right\rangle$$
 Correct Choice

b.
$$\left\langle \frac{9}{\sqrt{97}}, \frac{4}{\sqrt{97}} \right\rangle$$

c.
$$\left\langle \frac{9}{13}, \frac{4}{13} \right\rangle$$

d.
$$\left\langle \frac{-9}{5}, \frac{-4}{5} \right\rangle$$

$$e. \left\langle \frac{9}{5}, \frac{4}{5} \right\rangle$$

Solution:
$$\vec{\nabla}T = \left\langle \frac{1}{4}x^2y^2, \frac{1}{6}x^3y \right\rangle = \langle 9, 4 \rangle$$
 $\vec{u} = -\vec{\nabla}T = \langle -9, -4 \rangle$ $|\vec{u}| = \sqrt{9^2 + 4^2} = \sqrt{97}$ $\hat{u} = \frac{\vec{u}}{|\vec{u}|} = \left\langle \frac{-9}{\sqrt{97}}, \frac{-4}{\sqrt{97}} \right\rangle$

- **6**. The point (1,2) is a critical point of the function $f(x,y) = 16x^4 + y^4 32xy$. Classify the point (1,2) using the Second Derivative Test.
 - a. Local Maximum
 - b. Local Mininum Correct Choice
 - c. Inflection Point
 - d. Saddle Point
 - e. Test Fails

Solution:
$$f_x = 64x^3 - 32y$$
 $f_x(1,2) = 64 - 64 = 0$ $f_y = 4y^3 - 32x$ $f_y(1,2) = 32 - 32 = 0$
 $f_{xx} = 192x^2$ $f_{xx}(1,2) = 192 > 0$ $f_{yy} = 12y^2$ $f_{yy}(1,2) = 48$ $f_{xy} = -32$ $f_{xy}(1,2) = -32$
 $D = f_{xx}f_{yy} - f_{xy}^2$ $D(1,2) = 192 \cdot 48 - 32^2 = 8192 > 0$ Local Minimum

7. Find the mass of the piece of the solid paraboloid $z = x^2 + y^2$ for $2 \le z \le 4$ if the density is $\delta = z$.

b.
$$\frac{112}{3}\pi$$

- **c**. $\frac{56}{3}\pi$ Correct Choice
- **d**. 60π
- **e**. 64π

Solution: In cylindrical coordinates, $dV = r dr d\theta dz$ and the paraboloid is $z = r^2$. Since z goes between constant limits, we put the z integral outside and write the cone as $r = \sqrt{z}$. So

$$M = \iiint \delta \, dV = \int_0^{2\pi} \int_2^4 \int_0^{\sqrt{z}} z \, r \, dr \, dz \, d\theta = 2\pi \int_2^4 z \left[\frac{r^2}{2} \right]_0^{\sqrt{z}} \, dz = \pi \int_2^4 z^2 \, dz = \pi \frac{z^3}{3} \, \bigg|_2^4 = \pi \frac{64 - 8}{3} = \frac{56\pi}{3}$$

- **8**. Find the center of mass of the piece of the solid paraboloid $z = x^2 + y^2$ for $2 \le z \le 4$ if the density is $\delta = z$.
 - **a**. $\frac{14}{15}$
 - **b**. $\frac{14}{45}$
 - **c**. $\frac{14}{75}$
 - **d**. $\frac{45}{14}$ Correct Choice
 - **e**. $\frac{15}{14}$

Solution: By symmetry, $\bar{x} = \bar{y} = 0$. To find \bar{z} we compute:

$$M_z = \iiint z \, \delta \, dV = \int_0^{2\pi} \int_2^4 \int_0^{\sqrt{z}} z^2 \, r \, dr \, dz \, d\theta = 2\pi \int_2^4 z^2 \left[\frac{r^2}{2} \right]_0^{\sqrt{z}} \, dz = \pi \int_2^4 z^3 \, dz = \pi \frac{z^4}{4} \Big|_2^4 = \pi \frac{256 - 16}{4} = 60\pi$$

$$\bar{z} = \frac{M_z}{M} = 60\pi \frac{3}{56\pi} = \frac{45}{14}$$

- **9**. Find the equation of the plane tangent to the hyperboloid xyz = 6 at the point (3,2,1).
 - **a.** 2x + 3y + 6z = 18 Correct Choice
 - **b**. 3x + 2y + z = 18
 - **c**. 3x + 2y + z = 14
 - **d**. (x,y,z) = (2+3t,3+2t,6+t)
 - **e**. (x,y,z) = (3+2t,2+3t,1+6t)

Solution:
$$P = (3,2,1)$$
 $F = xyz$ $\vec{\nabla}F = (yz,xz,xy)$ $\vec{N} = \vec{\nabla}F \Big|_{(3,2,1)} = (2,3,6)$ $N \cdot X = N \cdot P$ $2x + 3y + 6z = 2(3) + 3(2) + 6(1) = 18$

10. Find the volume under the surface z=2xy above the region bounded by y=x and $y=2\sqrt{x}$. The base is shown at the right.

- **b**. $\frac{128}{3}$
- **c**. $\frac{64}{7}$
- **d**. $\frac{64}{5}$
- **e**. $\frac{64}{3}$ Correct Choice

Work Out: (Points indicated. Part credit possible. Show all work.)

11. (5 points) At the right is the contour plot of a function f(x,y). The contours are labeled by the function values. If you start at the cross at (-6,4) and move so that your velocity is always in the direction of ∇f , the gradient of f, roughly sketch your path on the plot.

Solution: You are to draw a curve which starts at the cross, comes down and curves to the right, always perpendicular to each contour it crosses.

12. (20 points) A 83 cm wire is cut into 3 pieces. As shown in the plots, one piece is bent into a square of side a. Another piece is bent into a rectangle with sides b and 2b. The third piece is bent into a rectangle with sides c and 3c. Note: a, b and c may not be the same length, even if they look that way in the plots. Find a, b and c which minimize the total area enclosed in the three shapes. Note: the constraint is the sum of the perimeters.

You do NOT need to check it is a minimum rather than a maximum.

Solution: Minimize $A = a^2 + 2b^2 + 3c^2$ subject to the constraint L = 4a + 6b + 8c = 83. Lagrange Multipliers: $\vec{\nabla}A = \langle 2a, 4b, 6c \rangle$ $\vec{\nabla}L = \langle 4, 6, 8 \rangle$ Lagrange equations: $\vec{\nabla}A = \lambda\vec{\nabla}L$ $2a = 4\lambda$ $4b = 6\lambda$ $6c = 8\lambda$ or $a = 2\lambda$ $b = \frac{3}{2}\lambda$ $c = \frac{4}{3}\lambda$

Plug into the constraint:

$$4a + 6b + 8c = 8\lambda + 9\lambda + \frac{32}{3}\lambda = 83$$

Solve for λ and substitute back:

$$24\lambda + 27\lambda + 32\lambda = 249$$
 $\lambda = \frac{249}{83} = 3$ $a = 6$ $b = \frac{9}{2}$ $c = 4$

13. (25 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F} = \left\langle 2xz^2, 2yz^2, \frac{1}{3}z^3 \right\rangle$ and the solid above the cone $z = \sqrt{x^2 + y^2}$ below the plane z = 2.

Be careful with orientations. Use the following steps:

First the Left Hand Side:

a. Compute the divergence and give the volume element in the appropriate coordinate system:

$$\vec{\nabla} \cdot \vec{F} = 2z^2 + 2z^2 + z^2 = 5z^2$$

$$dV = r dr d\theta dz$$

b. Compute the left hand side: Here are 2 ways:

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{z} 5z^{2} r \, dr \, dz \, d\theta = 2\pi \int_{0}^{2} \left[5z^{2} \frac{r^{2}}{2} \right]_{r=0}^{z} dz = \pi \int_{0}^{2} 5z^{4} \, dz = \pi [z^{5}]_{0}^{2} = 32\pi$$

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \, dV = \int_{0}^{2\pi} \int_{0}^{2} \int_{r}^{2} 5z^{2} r \, dz \, dr \, d\theta = 2\pi \int_{0}^{2} \left[\frac{5z^{3}}{3} r \right]_{z=r}^{z} dr = \frac{10\pi}{3} \int_{0}^{2} 8r - r^{4} \, dr$$

$$= \frac{10\pi}{3} \left[4r^{2} - \frac{r^{5}}{5} \right]_{0}^{2} = \frac{10\pi}{3} 2^{4} \left(1 - \frac{2}{5} \right) = 32\pi$$

Second the Right Hand Side:

The boundary surface consists of the cone C and a disk D with appropriate orientations.

c. Parametrize the disk D:

$$\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, 2 \rangle$$

d. Compute the tangent vectors:

$$\vec{e}_r = \langle \cos \theta, \quad \sin \theta, \quad 0 \rangle$$

$$\vec{e}_{\theta} = \langle -r\sin\theta, \quad r\cos\theta, \qquad 0 \rangle$$

e. Compute the normal vector:

$$\vec{N} = \hat{\imath}(0) - \hat{\jmath}(0) + \hat{k}(r\cos^2\theta - r\sin^2\theta) = \langle 0, 0, r \rangle$$
 Need up. The orientation is correct.

f. Evaluate $\vec{F} = \left\langle 2xz^2, 2yz^2, \frac{1}{3}z^3 \right\rangle$ on the disk:

$$\vec{F}|_{\vec{R}(r,\theta)} = \left\langle 8r\cos\theta, 8r\sin\theta, \frac{8}{3} \right\rangle$$

g. Compute the dot product:

$$\vec{F} \cdot \vec{N} = \frac{8}{3}r$$

h. Compute the flux through *D*:

$$\iint_{D} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{2} \frac{8}{3} r dr d\theta = 2\pi \left[\frac{4r^{2}}{3} \right]_{0}^{2} = \frac{32\pi}{3}$$

Parametrize the cone C as $\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, r \rangle$

i. Compute the tangent vectors:

$$\vec{e}_r = \langle \cos \theta, \quad \sin \theta, \quad 1 \rangle$$

$$\vec{e}_{\theta} = \langle -r\sin\theta, r\cos\theta, 0 \rangle$$

j. Compute the normal vector:

$$\vec{N} = \hat{\imath}(-r\cos\theta) - \hat{\jmath}(-r\sin\theta) + \hat{k}(r\cos^2\theta - r\sin^2\theta) = \langle -r\cos\theta, -r\sin\theta, r \rangle$$

This is in and up. We need out and down.

Reverse:
$$\vec{N} = \langle r \cos \theta, r \sin \theta, -r \rangle$$

k. Evaluate $\vec{F} == \left\langle 2xz^2, 2yz^2, \frac{1}{3}z^3 \right\rangle$ on the cone:

$$\vec{F}\big|_{\vec{R}(\theta,\phi)} = \left\langle 2r^3 \cos \theta, 2r^3 \sin \theta, \frac{1}{3}r^3 \right\rangle$$

I. Compute the dot product:

$$\vec{F} \cdot \vec{N} = 2r^4 \cos^2 \theta + 2r^4 \sin^2 \theta - \frac{1}{3}r^4 = \frac{5}{3}r^4$$

m. Compute the flux through C:

$$\iint_{C} \vec{F} \cdot d\vec{S} = \int_{0}^{2\pi} \int_{0}^{2} \frac{5}{3} r^{4} dr d\theta = 2\pi \left[\frac{r^{5}}{3} \right]_{0}^{2} = \frac{64\pi}{3}$$

n. Compute the TOTAL right hand side:

$$\iint\limits_{\partial V} \vec{F} \cdot d\vec{S} = \iint\limits_{D} \vec{F} \cdot d\vec{S} + \iint\limits_{C} \vec{F} \cdot d\vec{S} = \frac{32\pi}{3} + \frac{64\pi}{3} = 32\pi \qquad \text{which agrees with (c)}.$$