Name____

MATH 251

Final Version H

Fall 2018

Sections 200/202

P. Yasskin

Multiple Choice: (4 points each. No part credit.)

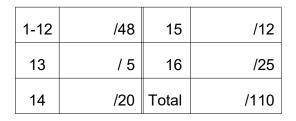
1.	Compute $I = \int_{\partial R} (2y + 3x^2y^2) dx + (5x + 2x^3y) dy$					
	over the complete boundary of the triangle					
	shown at the right traversed counterclockwise.					
	HINT: Use a theorem.					

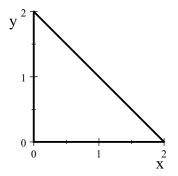
b.
$$I = 6$$

c.
$$I = 7$$

d.
$$I = 12$$

e.
$$I = 14$$





2. Compute $\int_{(1,1,1)}^{(8,4,2)} \vec{F} \cdot d\vec{s}$ for $\vec{F} = \langle y^2 z^2, 2xyz^2, 2xy^2z \rangle$ along the curve $\vec{r}(t) = \langle t^3, t^2, t \rangle$.

HINT: Find a scalar potential.

3. Compute $\iint_S \vec{\nabla} \times \vec{F} \cdot d\vec{S}$ over the quartic surface

 $z = x^4 + 2x^2y^2 + y^4$ with $z \le 16$ oriented **down** and **out**,

for
$$\vec{F} = \langle -yz, xz, z^2 \rangle$$
.

HINT: Use a theorem.

- **a**. 128π
- **b**. 256π
- **c**. 512π
- **d**. 1024π
- **e**. 2048π

- **4**. The two legs of a right triangle are \vec{a} and \vec{b} and the hypotenuse is \vec{c} . So $\vec{a} \perp \vec{b}$ and $\vec{c} = \vec{a} + \vec{b}$. Given that $\vec{c} = \langle 9, 9, -9 \rangle$ and the direction of \vec{a} is $\hat{a} = \left\langle \frac{2}{3}, \frac{-1}{3}, \frac{-2}{3} \right\rangle$, find the magnitude \vec{b} .
 - **a**. $|\vec{b}| = 36$
 - **b**. $|\vec{b}| = 18\sqrt{2}$
 - **c**. $|\vec{b}| = 18$
 - $\mathbf{d.} \ \left| \overrightarrow{b} \right| = 9\sqrt{2}$
 - $\mathbf{e.} \ \left| \overrightarrow{b} \right| = 9$
- **5**. An ant is walking across a frying pan where the temperature is $T = \frac{1}{12}x^3y^2$. If the ant is currently at P = (2,3), in what unit vector direction should the ant walk to reduce the temperature as fast as possible?
 - **a**. $\left\langle \frac{9}{13}, \frac{4}{13} \right\rangle$
 - **b**. $\left\langle \frac{-9}{5}, \frac{-4}{5} \right\rangle$
 - **c**. $\left\langle \frac{9}{5}, \frac{4}{5} \right\rangle$
 - $\mathbf{d.} \ \left\langle \frac{9}{\sqrt{97}}, \frac{4}{\sqrt{97}} \right\rangle$
 - e. $\left\langle \frac{-9}{\sqrt{97}}, \frac{-4}{\sqrt{97}} \right\rangle$

- **6**. The point (1,2) is a critical point of the function $f(x,y) = 16x^4 + y^4 32xy$. Classify the point (1,2) using the Second Derivative Test.
 - a. Local Mininum
 - **b**. Local Maximum
 - c. Saddle Point
 - d. Inflection Point
 - e. Test Fails

7. Find the mass of the piece of the solid paraboloid $z = x^2 + y^2$ for $2 \le z \le 4$ if the density is $\delta = z$.

c.
$$\frac{112}{3}\pi$$

d.
$$\frac{56}{3}\pi$$

e. 20π

8. Find the center of mass of the piece of the solid paraboloid $z = x^2 + y^2$ for $2 \le z \le 4$ if the density is $\delta = z$.

a.
$$\frac{14}{75}$$

b.
$$\frac{14}{15}$$

c.
$$\frac{45}{14}$$

d.
$$\frac{14}{45}$$

e.
$$\frac{15}{14}$$

9. Find the equation of the plane tangent to the hyperboloid xyz = 6 at the point (3,2,1).

a.
$$(x,y,z) = (3+2t,2+3t,1+6t)$$

b.
$$(x,y,z) = (2+3t,3+2t,6+t)$$

c.
$$3x + 2y + z = 14$$

d.
$$3x + 2y + z = 18$$

e.
$$2x + 3y + 6z = 18$$

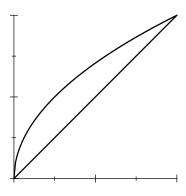
10. Find the volume under the surface z=2xy above the region bounded by y=x and $y=2\sqrt{x}$. The base is shown at the right.

b.
$$\frac{128}{5}$$

c.
$$\frac{64}{3}$$

d.
$$\frac{64}{5}$$

e.
$$\frac{64}{7}$$



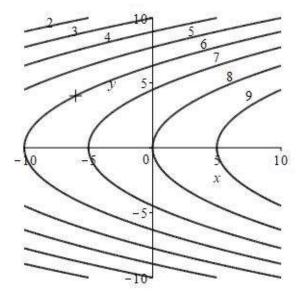
0	0	0	2	0	0
3	0	0	0	5	0
0	0	3	0	0	0
1	0	0	0	2	0
0	0	0	0	0	4
0	5	0	0	0	0

- **a**. 2!
- **b**. 3!
- **c**. 4!
- **d**. 5!
- **e**. 6!

12. In \mathbb{R}^2 , compute $\oint_C \vec{F} \cdot d\vec{n}$, the flux of $\vec{F} = \langle x^3, y^3 \rangle$ outward thru the circle $x^2 + y^2 = 4$. HINT: Use a Theorem.

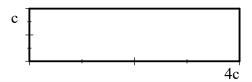
- **a**. 12π
- **b**. 16π
- **c**. 24π
- **d**. 36π
- **e**. 48π

13. (5 points) At the right is the contour plot of a function f(x,y). The contours are labeled by the function values. If you start at the cross at (-6,4) and move so that your velocity is always in the direction of $\vec{\nabla} f$, the gradient of f, roughly sketch your path on the plot.



14. (20 points) A 118 cm wire is cut into 3 pieces. As shown in the plots, one piece is bent into a square of side a. Another piece is bent into a rectangle with sides b and b and b. The third piece is bent into a rectangle with sides b and b and

You do NOT need to check it is a minimum rather than a maximum.



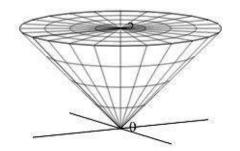
15. (12 points) Determine whether or not each of these limits exists. If it exists, find its value.

a.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y^2}{x^6+3y^3}$$

b.
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$$

16. (25 points) Verify Gauss' Theorem $\iiint_V \vec{\nabla} \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot d\vec{S}$

for the vector field $\vec{F}=\langle -xz^2,-yz^2,z^3\rangle$ and the solid above the cone $z=\sqrt{x^2+y^2}$ below the plane z=2.



Be careful with orientations. Use the following steps:

First the Left Hand Side:

a. Compute the divergence and give the volume element in the appropriate coordinate system:

 $\vec{\nabla} \cdot \vec{F} =$

$$dV =$$

b. Compute the left hand side:

$$\iiint\limits_{V} \vec{\nabla} \cdot \vec{F} \, dV =$$

Second the Right Hand Side:

The boundary surface consists of the cone C and a disk D with appropriate orientations.

c. Parametrize the disk *D*:

$$\vec{R}(r,\theta) =$$

d. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

e. Compute the normal vector:

$$\vec{N} =$$

f. Evaluate $\vec{F} = \langle -xz^2, -yz^2, z^3 \rangle$ on the disk:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

g. Compute the dot product:

$$\vec{F} \cdot \vec{N} =$$

h. Compute the flux through *D*:

$$\iint\limits_{D} \vec{F} \cdot d\vec{S} =$$

Parametrize the cone C as $\vec{R}(r,\theta) = \langle r\cos\theta, r\sin\theta, r \rangle$

i. Compute the tangent vectors:

$$\vec{e}_r =$$

$$\vec{e}_{\theta} =$$

j. Compute the normal vector:

$$\vec{N} =$$

k. Evaluate $\vec{F} = \langle -xz^2, -yz^2, z^3 \rangle$ on the cone:

$$\vec{F}\big|_{\vec{R}(r,\theta)} =$$

I. Compute the dot product

$$\vec{F} \cdot \vec{N} =$$

 \mathbf{m} . Compute the flux through C:

$$\iint\limits_C \vec{F} \cdot d\vec{S} =$$

- $\boldsymbol{n}.$ Compute the \boldsymbol{TOTAL} right hand side:

$$\iint\limits_{\partial V} \vec{F} \cdot d\vec{S} =$$