Name_____ ID_____ Section___ 1-8 /40 11 /20 Exam 1 **MATH 253** Spring 2003 9 /13 12 /15 **Sections 501-503** P. Yasskin 10 /12 13 / 5

Multiple Choice: (5 points each) Work Out: (points indicated)

- **1.** Find the distance between the points P = (2,6,-3) and Q = (6,3,9).
 - **a.** $\sqrt{151}$
 - **b.** 13
 - **c.** 19
 - **d.** 151
 - **e.** 169

- **2.** A triangle has vertices A = (1,2,3), B = (1,0,1) and C = (2,2,2). Find the angle at A.
 - a. 0°
 - **b.** 30°
 - **c.** 45°
 - d. 60°
 - **e.** 120°

- **3.** A triangle has vertices A = (1,2,3), B = (1,0,1) and C = (2,2,2). Find the area.
 - a. $\sqrt{6}$
 - **b.** $\sqrt{2}$
 - **c.** $\sqrt{3}$
 - **d.** $2\sqrt{2}$
 - **e.** $2\sqrt{3}$

- **4.** Find x so that $\langle 2,1,3 \rangle \cdot \langle 4,2,x \rangle = 1$.
 - **a.** -3
 - **b.** -2
 - **c.** 0
 - **d.** 2
 - **e.** 3

- **5.** \vec{a} is 4 units long and points along the positive *x*-axis.
 - \vec{b} is 3 units long and points along the positive z-axis. Then $\vec{a} \times \vec{b}$ is
 - **a.** 7 units long and points along the negative x-axis.
 - **b.** 5 units long and points along the positive *y*-axis.
 - **c.** 5 units long and points along the negative *y*-axis.
 - **d.** 12 units long and points along the positive *y*-axis.
 - **e.** 12 units long and points along the negative *y*-axis.

6. A certain plane may be parametrized as $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + t \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix}$.

Find its non-parametric equation.

a.
$$x + y + z = 6$$

b.
$$x - y - z = 0$$

c.
$$x - y + z = 2$$

d.
$$-x - y + z = -4$$

e.
$$x + y - z = -2$$

- **7.** You swing a ball on a string, so that it moves in the circle $\vec{r}(t) = (3\cos t, 0, 3\sin t)$ where t measures time. What is the tangential acceleration?
 - **a.** 0
 - **b.** 3
 - **c.** 6
 - **d.** 9
 - **e.** 12

- **8.** If $f(x,y,z) = x^4y^3z^2$ then $\frac{\partial^4 f}{\partial^2 x \partial y \partial z}\Big|_{(x,y,z)=(1,2,3)} =$
 - **a.** 1
 - **b.** 6
 - **c.** 72
 - **d.** 96
 - **e.** 864

9. (13 points) Find the arc length of the curve $\vec{r}(t) = \left\langle \frac{3}{2}t^2, 2t^2, \frac{5}{3}t^3 \right\rangle$ for $0 \le t \le \sqrt{3}$. HINT: Factor the quantity inside the square root.

10. (12 points) The equation $xz^2 + yz^3 = 5$ implicitly defines z as a function of x and y. Compute $\frac{\partial z}{\partial y}$ at the point (x,y,z) = (3,2,1).

11. (20 points) Consider the hyperbolic paraboloid $z = f(x,y) = y^2 - x^2$. Find the tangent plane at (x,y) = (1,2). Then identify the *z*-intercept of the tangent plane.

12. (15 points) The equation $2xz^4 + yz^3 = 7$ implicitly defines z = f(x,y) near (x,y,z) = (2,3,1). Using implicit differentiation, it can be shown (DON'T DO IT.) that $\frac{\partial f}{\partial x}(2,3) = -.08$ and $\frac{\partial f}{\partial y}(2,3) = -.04$

Using the linear approximation, estimate f(2.1,3.2).

13. (5 points Extra Credit) Drop a perpendicular from the point Q = (4,6) to the line (x,y) = (1,2) + t(2,1). Find the foot of the perpendicular, i.e. the point where the perpendicular line intersects the original line.