Name_ ID_____ Section_ 1-9 /45 12 /15 Exam 2 **MATH 253** Spring 2003 10 /15 13 /15 **Sections 501-503** P. Yasskin 11 /15

Multiple Choice: (5 points each) Work Out: (15 points each)

- 1. The density of the air in a room is given by $\rho = x^2z + y^2z$. At t = 3, a fly's position is $\vec{r} = (3,3,4)$ and its velocity is $\vec{v} = (2,3,-1)$. Find $\frac{d\rho}{dt}$ as seen by the fly at t = 3.
 - **a.** -39
 - **b.** -11
 - **c.** 11
 - **d.** 39
 - **e.** 102
- **2.** The altitude on a mountain is $z = 27 3x^2 5y^2 + xy$. A hiker is currently on the mountain at the point (x,y) = (2,1). In what direction should the hiker walk to come down as quickly as possible?
 - **a.** (8,-11)
 - **b.** (8,11)
 - **c.** (11,8)
 - **d.** (11, -8)
 - **e.** (-11, -8)
- **3.** (Extra Credit) The altitude on a mountain is $z = 27 3x^2 5y^2 + xy$. A hiker is currently on the mountain at the point (x,y) = (2,1). In what direction should the hiker walk to stay at exactly the same altitude?
 - **a.** (8,-11)
 - **b.** (8, 11)
 - **c.** (11,8)
 - **d.** (11,-8)
 - **e.** (-11, -8)

4. Suppose
$$f(x,y) = x^2y^3$$
 where $x = x(u,v)$ and $y = y(u,v)$. Compute $\frac{\partial f}{\partial v}\Big|_{(u,v)=(3,4)}$ if

$$c(3,4) = 2 \qquad \frac{\partial x}{\partial u} \Big|_{(u,v)=(3,4)} = 4 \qquad \frac{\partial x}{\partial v} \Big|_{(u,v)=(3,4)} =$$

$$x(3,4) = 2 \qquad \frac{\partial x}{\partial u} \Big|_{(u,v)=(3,4)} = 4 \qquad \frac{\partial x}{\partial v} \Big|_{(u,v)=(3,4)} = 6$$

$$y(3,4) = 1 \qquad \frac{\partial y}{\partial u} \Big|_{(u,v)=(3,4)} = 3 \qquad \frac{\partial y}{\partial v} \Big|_{(u,v)=(3,4)} = 5$$

- **a.** 17
- **b.** 39
- **c.** 72
- **d.** 84
- **e.** 4464

- **5.** Find the equation of the plane tangent to the surface $xz^2 + yz^3 = 5$ at the point (x,y,z) = (2,3,1).
 - **a.** x + y + 13z = 18
 - **b.** 2x + 3y + z = 18
 - **c.** 2x + 9y + 5z = 36
 - **d.** 2x + 3y + z = 36
 - **e.** 2x + 3y + z = 14

- **6.** Which of the following is NOT a critical point of the function $g = xy^3 + x^3y 9xy$?
 - **a.** (0,0)
 - **b.** (-3,0)
 - **c.** (0,3)
 - **d.** (0,-3)
 - **e.** (-3,3)

- **7.** The function $f = xy^3 + x^3y 4xy$ has a critical point at the point (x,y) = (1,-1). Use the Second Derivative Test to classify this critical point.
 - a. Local Minimum
 - **b.** Local Maximum
 - c. Saddle Point
 - d. Test Fails

- **8.** Compute $\int_{0}^{2} \int_{y}^{y^{2}} 2xy \, dx \, dy$.
 - **a.** $\frac{56}{15}$
 - **b.** $\frac{10}{3}$
 - **c.** $\frac{20}{3}$
 - **d.** $\frac{32}{3}$
 - **e.** $\frac{56}{3}$

- **9.** Compute $\int_0^2 \int_0^3 \int_{x^2+y^2}^{2x^2+2y^2} 1 \, dz \, dy \, dx.$
 - **a.** 13
 - **b.** 26
 - **c.** 31
 - **d.** 32
 - **e.** 62

10.	Find the	length	L,	width	W	and height	H	of the rectangular box with maximum volume	3
	such that	L+2I	W + 1	3H = 36	j. '	You must sol	ve l	by eliminating a variable . (Do not solve by	
	Lagrange	multipl	liers	.)					

11. A styrofoam cup in the shape of a cylinder without a lid is to hold 64π cm³ of coffee. Find the radius r and height h of the cup which uses the least styrofoam. Ignore the thickness of the styrofoam. You must solve by **Lagrange multipliers**. (Do not solve by eliminating a variable.)

12. Find the volume below surface z = 2xy above the triangle with vertices (0,0), (1,0) and (0,2) in the xy-plane.

13. Compute $I = \int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx dy$ by interchanging the order of integration.