Name	ID	Section		
			1-7	/42
MATH 253	Exam 2	Spring 2004	8	/15
Sections 504-506		P. Yasskin		
On the front of the Dive Deek, on the Countries and on this sheet			9	/15
On the front of the Blue Book, on the Scantron and on this sheet			10	/15
write your Name, your University ID, your Section and "Exam 2."			10	
On the front of the Blue Book copy the Grading Grid shown at the right.			11	/15
Enter your Multiple Choice answers on the Scantron				
and CIPCLE them on this sheet			Total	/102

Multiple Choice: (6 points each. No part credit.)

1. Find the equation of the plane tangent to the graph of the function $f(x,y) = x^2y$ at the point (3,2,18).

a.
$$z = 12x + 9y + 18$$

and CIRCLE them on this sheet.

b.
$$z = 9x + 12y + 18$$

c.
$$z = 12x + 9y - 36$$

d.
$$z = 9x + 12y - 18$$

e.
$$z = 4x^2y - 6xy - 2x^2$$

- **2.** The equation of the plane tangent to the graph of z = f(x,y) at (1,2) is z = 4 + 2(x 1) 3(y 2). Use the linear approximation to estimate f(1,2,1.9).
 - **a.** 0.7
 - **b.** 3.3
 - **c.** 3.9
 - **d.** 4.1
 - **e.** 4.7

3. Find the equation of the plane tangent to the ellipsoid $\frac{x^2}{3} + \frac{y^2}{12} + \frac{z^2}{27} = 1$ at the point (1,2,3).

a.
$$6x + 3y + 2z = 18$$

b.
$$6x + 3y + 2z = -18$$

c.
$$36x + 9y + 4z = 66$$

d.
$$36x + 9y + 4z = -66$$

e.
$$3x + 2y + z = 10$$

4. If the temperature is $T(x,y,z) = \frac{xy}{z}$ and a bird is at (x,y,z) = (3,2,1), in what unit vector direction should the bird fly to warm up as quick as possible?

a.
$$(3,2,-6)$$

b.
$$\left(\frac{3}{7}, \frac{2}{7}, \frac{-6}{7}\right)$$

c.
$$(2,3,-6)$$

d.
$$\left(\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}\right)$$

5. If the temperature is $T(x,y,z) = \frac{xy}{z}$ and a bird is at (x,y,z) = (3,2,1) flying with velocity $\vec{v} = (2,1,3)$, what is the rate of change of the temperature as seen by the bird?

b.
$$-11$$

6. If $w = x^3 + y^3$ where $x = \cos(pq)$ and $y = \sin(pq)$, find $\frac{\partial w}{\partial q}$ at $(p,q) = \left(\frac{1}{6},\pi\right)$.

NOTE:
$$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
 $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$

- **a.** $\frac{\sqrt{3}-3}{16}$
- **b.** $\frac{3-\sqrt{3}}{16}$
- **c.** $\frac{\sqrt{3} + 3}{16}$
- **d.** $\frac{-3 \sqrt{3}}{16}$
- **e.** $\frac{3-2\sqrt{3}}{16}$

7. Suppose $f(x,y)=x^2y$ where x=x(u,v) and y=y(u,v). Find $\frac{\partial f}{\partial u}\Big|_{(u,v)=(3,4)}$ given that:

$$x(3,4) = 1 \qquad \frac{\partial x}{\partial u} \Big|_{(u,v)=(3,4)} = 5 \qquad \frac{\partial x}{\partial v} \Big|_{(u,v)=(3,4)} = 7$$

$$y(3,4) = 2 \qquad \frac{\partial y}{\partial u} \Big|_{(u,v)=(3,4)} = 6 \qquad \frac{\partial y}{\partial v} \Big|_{(u,v)=(3,4)} = 8$$

- **a.** 13
- **b.** 26
- **c.** 52
- **d.** 83
- **e.** 174

Work Out: (15 points each. Part credit possible.)

Start each problem on a new page of the Blue Book. Number the problem. Show all work.

8. (15 points) Find 3 positive numbers a, b and c, whose product is 36 for which a+2b+3c is a minimum.

You MUST solve the problem by Eliminating a Variable.

9. (15 points) Find 3 positive numbers a, b and c, whose product is 36 for which a+2b+3c is a minimum.

You MUST solve the problem by the Method of Lagrange Multipliers.

- **10.** (15 points) Suppose x, y and z are related by the equation yz + xz + xy = 11.
 - **a.** Use implicit differentiation to compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (1,2,3).
 - **b.** Find the equation of the plane tangent to the surface yz + xz + xy = 11 at the point (1,2,3).
- **11.** (15 points) Find all critical points of the function $f(x,y) = 8x^3 + y^3 12xy$ and classify each as a local minimum, a local maximum or a saddle point. Be sure to say why.

NOTE: $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$