\qquad
\qquad
MATH 253
Quiz $2 \quad$ Spring 2007
Sections 501-503 Solutions P. Yasskin

$1-4$	$/ 20$
5	$/ 5$
Total	$/ 25$

Multiple Choice \& Work Out: (5 points each)

1. Find the equation of the line through the point $P=(4,3,2)$ in the direction $\vec{v}=(2,1,-1)$. Where does this line pass through the $x y$-plane?
a. $(8,5,0)$ Correct Choice
b. $(1,2,0)$
c. $(8,-5,0)$
d. $(1,-2,0)$
e. $\left(4, \frac{5}{2}, 0\right)$

The line is: $\quad X=P+\vec{v} \quad$ or $\quad(x, y, z)=(4+2 t, 3+t, 2-t)$
This intersects the $x y$-plane when $z=0$ or $2-t=0$ or $t=2$.
So $\quad x=4+2 t=8 \quad$ and $\quad y=3+t=5$.
2. Find the equation of the plane through the point $P=(1,3,3)$ with normal $\vec{N}=(4,2,-2)$. Where does this plane pass through the z-axis?
a. $(0,0,-2)$ Correct Choice
b. $(0,0,-1)$
c. $(0,0,1)$
d. $(0,0,2)$
e. $(0,0,4)$

The line is: $\quad \vec{N} \cdot X=\vec{N} \cdot P \quad$ or $\quad 4 x+2 y-2 z=4 \cdot 1+2 \cdot 3-2 \cdot 3=4$
This intersects the z-axis when $x=y=0$. So $-2 z=4$ or $z=-2$.
3. Classify the curve $x^{2}-y^{2}-6 x-4 y=-4$
a. circle with center $(3,-2)$
b. circle with center $(-3,2)$
c. hyperbola opening left and right

Correct Choice
d. hyperbola opening up and down
e. parabola with vertex $(-3,2)$

Complete squares: $\quad\left(x^{2}-6 x+9\right)-\left(y^{2}+4 y+4\right)=-4+9-4=1$
or $\quad(x-3)^{2}-(y+2)^{2}=1 \quad$ which is a hyperbola.
Since $\quad(x-3)^{2}=1+(y+2)^{2}$ we have $(x-3)^{2} \geq 1$.
So the hyperbola opens left and right.
4. Classify the surface $x^{2}+y^{2}-4 x-4 y-z=-4$
a. elliptic paraboloid opening up Correct Choice
b. elliptic paraboloid opening down
c. hyperboloid of 1 sheet
d. hyperboloid of 2 sheets
e. hyperbolic paraboloid

Complete squares: $\quad\left(x^{2}-4 x+4\right)+\left(y^{2}+4 y+4\right)-z=-4+4+4=4$
or $\quad z=(x-2)^{2}+(y-2)^{2}-4 \quad$ which is a paraboloid.
Since the coefficients of x^{2} and y^{2} are both positive, the paraboloid is elliptic, opening up.
5. Find the point where the line $\frac{x-1}{-1}=\frac{y-5}{2}=z-7$ intersects the plane $3 x-2 y+z=12$. HINT: Use the line to write x and y as functions of z. Solve this on the back of the Scantron. Show all work.
$x-1=-1(z-7) \quad x=-z+8 \quad y-5=2(z-7) \quad y=2 z-9$
Plug into the plane:
$3(-z+8)-2(2 z-9)+z=11 \quad$ or $\quad-3 z+24-4 z+18+z=12$ or $-6 z=-30$
So $\quad z=5 \quad x=-z+8=-5+8=3 \quad y=2 z-9=2 \cdot 5-9=1$
So the point is: $\quad(x, y, z)=(3,1,5)$
Check: $\quad \frac{x-1}{-1}=\frac{3-1}{-1}=-2 \quad \frac{y-5}{2}=\frac{1-5}{2}=-2 \quad z-7=5-6=-2 \quad$ Good $3 x-2 y+z=3 \cdot 3-2 \cdot 1+5=12$ Good

