ID_

MATH 253

Quiz 2

Spring 2007

Sections 501-503

Solutions

P. Yasskin

1-4	/20
5	/5
Total	/25

Multiple Choice & Work Out: (5 points each)

- **1**. Find the equation of the line through the point P = (4,3,2) in the direction $\vec{v} = (2,1,-1)$. Where does this line pass through the xy-plane?
 - **a**. (8,5,0) **Correct Choice**
 - **b**. (1,2,0)
 - **c**. (8,-5,0)
 - **d**. (1,-2,0)
 - **e**. $\left(4, \frac{5}{2}, 0\right)$

The line is:
$$X = P + t\vec{v}$$
 or $(x, y, z) = (4 + 2t, 3 + t, 2 - t)$

This intersects the xy-plane when z = 0 or 2 - t = 0 or t = 2.

x = 4 + 2t = 8and y = 3 + t = 5.

- **2**. Find the equation of the plane through the point P = (1,3,3) with normal $\vec{N} = (4,2,-2)$. Where does this plane pass through the *z*-axis?
 - **Correct Choice a**. (0,0,-2)
 - **b**. (0,0,-1)
 - **c**. (0,0,1)
 - **d**. (0,0,2)
 - **e**. (0,0,4)

The line is:

 $\vec{N} \cdot X = \vec{N} \cdot P$ or $4x + 2y - 2z = 4 \cdot 1 + 2 \cdot 3 - 2 \cdot 3 = 4$

This intersects the z-axis when x = y = 0. So -2z = 4 or z = -2.

- **3**. Classify the curve $x^2 y^2 6x 4y = -4$
 - **a**. circle with center (3,-2)
 - **b**. circle with center (-3,2)
 - c. hyperbola opening left and right Correct Choice
 - d. hyperbola opening up and down
 - **e**. parabola with vertex (-3,2)

Complete squares: $(x^2 - 6x + 9) - (y^2 + 4y + 4) = -4 + 9 - 4 = 1$

 $(x-3)^2 - (y+2)^2 = 1$ which is a hyperbola. or

 $(x-3)^2 = 1 + (y+2)^2$ we have $(x-3)^2 > 1$.

So the hyperbola opens left and right.

4. Classify the surface
$$x^2 + y^2 - 4x - 4y - z = -4$$

- a. elliptic paraboloid opening up Correct Choice
- **b**. elliptic paraboloid opening down
- c. hyperboloid of 1 sheet
- d. hyperboloid of 2 sheets
- e. hyperbolic paraboloid

Complete squares:
$$(x^2 - 4x + 4) + (y^2 + 4y + 4) - z = -4 + 4 + 4 = 4$$

or
$$z = (x-2)^2 + (y-2)^2 - 4$$
 which is a paraboloid.

Since the coefficients of x^2 and y^2 are both positive, the paraboloid is elliptic, opening up.

5. Find the point where the line
$$\frac{x-1}{-1} = \frac{y-5}{2} = z-7$$
 intersects the plane $3x-2y+z=12$.

HINT: Use the line to write x and y as functions of z.

Solve this on the back of the Scantron. Show all work.

$$x-1 = -1(z-7)$$
 $x = -z+8$ $y-5 = 2(z-7)$ $y = 2z-9$

$$y-5=2(z-7)$$
 $y=2z-9$

Plug into the plane:

$$3(-z+8)-2(2z-9)+z=11$$
 or $-3z+24-4z+18+z=12$ or $-6z=-30$

So
$$z = 5$$
 $x = -z + 8 = -5 + 8 = 3$ $y = 2z - 9 = 2 \cdot 5 - 9 = 1$

So the point is: (x, y, z) = (3, 1, 5)

Check:
$$\frac{x-1}{-1} = \frac{3-1}{-1} = -2$$
 $\frac{y-5}{2} = \frac{1-5}{2} = -2$ $z-7=5-6=-2$ Good

$$3x - 2y + z = 3 \cdot 3 - 2 \cdot 1 + 5 = 12$$
 Good